期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Classification of Positive COVID-19 CT Scans Using Deep Learning 被引量:3
1
作者 Muhammad Attique Khan nazar hussain +5 位作者 Abdul Majid Majed Alhaisoni Syed Ahmad Chan Bukhari Seifedine Kadry Yunyoung Nam Yu-Dong Zhang 《Computers, Materials & Continua》 SCIE EI 2021年第3期2923-2938,共16页
In medical imaging,computer vision researchers are faced with a variety of features for verifying the authenticity of classifiers for an accurate diagnosis.In response to the coronavirus 2019(COVID-19)pandemic,new tes... In medical imaging,computer vision researchers are faced with a variety of features for verifying the authenticity of classifiers for an accurate diagnosis.In response to the coronavirus 2019(COVID-19)pandemic,new testing procedures,medical treatments,and vaccines are being developed rapidly.One potential diagnostic tool is a reverse-transcription polymerase chain reaction(RT-PCR).RT-PCR,typically a time-consuming process,was less sensitive to COVID-19 recognition in the disease’s early stages.Here we introduce an optimized deep learning(DL)scheme to distinguish COVID-19-infected patients from normal patients according to computed tomography(CT)scans.In the proposed method,contrast enhancement is used to improve the quality of the original images.A pretrained DenseNet-201 DL model is then trained using transfer learning.Two fully connected layers and an average pool are used for feature extraction.The extracted deep features are then optimized with a Firefly algorithm to select the most optimal learning features.Fusing the selected features is important to improving the accuracy of the approach;however,it directly affects the computational cost of the technique.In the proposed method,a new parallel high index technique is used to fuse two optimal vectors;the outcome is then passed on to an extreme learning machine for final classification.Experiments were conducted on a collected database of patients using a 70:30 training:Testing ratio.Our results indicated an average classification accuracy of 94.76%with the proposed approach.A comparison of the outcomes to several other DL models demonstrated the effectiveness of our DL method for classifying COVID-19 based on CT scans. 展开更多
关键词 CORONAVIRUS contrast enhancement deep learning features optimization FUSION CLASSIFICATION
下载PDF
Multiclass Stomach Diseases Classication Using Deep Learning Features Optimization 被引量:3
2
作者 Muhammad Attique Khan Abdul Majid +4 位作者 nazar hussain Majed Alhaisoni Yu-Dong Zhang Seifedine Kadry Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第6期3381-3399,共19页
In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomac... In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance. 展开更多
关键词 Stomach infections deep features features optimization FUSION classication
下载PDF
An Integrated Deep Learning Framework for Fruits Diseases Classification 被引量:2
3
作者 Abdul Majid Muhammad Attique Khan +5 位作者 Majed Alhaisoni Muhammad Asfand Eyar Usman Tariq nazar hussain Yunyoung Nam Seifedine Kadry 《Computers, Materials & Continua》 SCIE EI 2022年第4期1387-1402,共16页
:Agriculture has been an important research area in the field of image processing for the last five years.Diseases affect the quality and quantity of fruits,thereby disrupting the economy of a country.Many computerize... :Agriculture has been an important research area in the field of image processing for the last five years.Diseases affect the quality and quantity of fruits,thereby disrupting the economy of a country.Many computerized techniques have been introduced for detecting and recognizing fruit diseases.However,some issues remain to be addressed,such as irrelevant features and the dimensionality of feature vectors,which increase the computational time of the system.Herein,we propose an integrated deep learning framework for classifying fruit diseases.We consider seven types of fruits,i.e.,apple,cherry,blueberry,grapes,peach,citrus,and strawberry.The proposed method comprises several important steps.Initially,data increase is applied,and then two different types of features are extracted.In the first feature type,texture and color features,i.e.,classical features,are extracted.In the second type,deep learning characteristics are extracted using a pretrained model.The pretrained model is reused through transfer learning.Subsequently,both types of features are merged using the maximum mean value of the serial approach.Next,the resulting fused vector is optimized using a harmonic threshold-based genetic algorithm.Finally,the selected features are classified using multiple classifiers.An evaluation is performed on the PlantVillage dataset,and an accuracy of 99%is achieved.A comparison with recent techniques indicate the superiority of the proposed method. 展开更多
关键词 Fruit diseases data augmentation deep learning classical features features fusion features selection
下载PDF
Classication of COVID-19 CT Scans via Extreme Learning Machin 被引量:2
4
作者 Muhammad Attique Khan Abdul Majid +5 位作者 Tallha Akram nazar hussain Yunyoung Nam Seifedine Kadry Shui-Hua Wang Majed Alhaisoni 《Computers, Materials & Continua》 SCIE EI 2021年第7期1003-1019,共17页
Here,we use multi-type feature fusion and selection to predict COVID-19 infections on chest computed tomography(CT)scans.The scheme operates in four steps.Initially,we prepared a database containing COVID-19 pneumonia... Here,we use multi-type feature fusion and selection to predict COVID-19 infections on chest computed tomography(CT)scans.The scheme operates in four steps.Initially,we prepared a database containing COVID-19 pneumonia and normal CT scans.These images were retrieved from the Radiopaedia COVID-19 website.The images were divided into training and test sets in a ratio of 70:30.Then,multiple features were extracted from the training data.We used canonical correlation analysis to fuse the features into single vectors;this enhanced the predictive capacity.We next implemented a genetic algorithm(GA)in which an Extreme Learning Machine(ELM)served to assess GA tness.Based on the ELM losses,the most discriminatory features were selected and saved as an ELM Model.Test images were sent to the model,and the best-selected features compared to those of the trained model to allow nal predictions.Validation employed the collected chest CT scans.The best predictive accuracy of the ELM classier was 93.9%;the scheme was effective. 展开更多
关键词 CORONAVIRUS classical features feature fusion feature optimization PREDICTION
下载PDF
Multiclass Cucumber Leaf Diseases Recognition Using Best Feature Selection
5
作者 nazar hussain Muhammad Attique Khan +5 位作者 Usman Tariq Seifedine Kadry Muhammad Asfand E.Yar Almetwally M.Mostafa Abeer Ali Alnuaim Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2022年第2期3281-3294,共14页
Agriculture is an important research area in the field of visual recognition by computers.Plant diseases affect the quality and yields of agriculture.Early-stage identification of crop disease decreases financial loss... Agriculture is an important research area in the field of visual recognition by computers.Plant diseases affect the quality and yields of agriculture.Early-stage identification of crop disease decreases financial losses and positively impacts crop quality.The manual identification of crop diseases,which aremostly visible on leaves,is a very time-consuming and costly process.In this work,we propose a new framework for the recognition of cucumber leaf diseases.The proposed framework is based on deep learning and involves the fusion and selection of the best features.In the feature extraction phase,VGG(Visual Geometry Group)and Inception V3 deep learning models are considered and fine-tuned.Both fine-tuned models are trained using deep transfer learning.Features are extracted in the later step and fused using a parallel maximum fusion approach.In the later step,best features are selected usingWhale Optimization algorithm.The best-selected features are classified using supervised learning algorithms for the final classification process.The experimental process was conducted on a privately collected dataset that consists of five types of cucumber disease and achieved accuracy of 96.5%.A comparison with recent techniques shows the significance of the proposed method. 展开更多
关键词 Cucumber diseases database preparation deep learning parallel fusion features selection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部