Incorporating nitrogen(N)atom in graphene is considered a key technique for tuning its electrical properties.However,this is still a great challenge,and it is unclear how to build N-graphene with desired nitrogen conf...Incorporating nitrogen(N)atom in graphene is considered a key technique for tuning its electrical properties.However,this is still a great challenge,and it is unclear how to build N-graphene with desired nitrogen configurations.There is a lack of experimental evidence to explain the influence and mechanism of structural defects for nitrogen incorporation into graphene compared to the derived DFT theories.Herein,this gap is bridged through a systematic study of different nitrogen-containing gaseous plasma post-treatments on graphene nanowalls(CNWs)to produce N-CNWs with incorporated and substituted nitrogen.The structural and morphological analyses describe a remarkable difference in the plasma–surface interaction,nitrogen concentration and nitrogen incorporation mechanism in CNWs by using different nitrogen-containing plasma.Electrical conductivity measurements revealed that the conductivity of the N-graphene is strongly influenced by the position and concentration of C–N bonding configurations.These findings open up a new pathway for the synthesis of N-graphene using plasma post-treatment to control the concentration and configuration of incorporated nitrogen for application-specific properties.展开更多
基金funded by the European Union’s Horizon Research and Innovation Program under Grant agreement No. 766894partially supported also by JSPS, MESS and ARRS under the Japan-Slovenia Research Cooperative Program grants to U.C., M.H. and H.Kthe allocation of synchrotron radiation beam time at Bessy II via projects 17205612ST/R, 17206156ST, 18106986ST, 19107892-ST/R and 191-08281 ST/R as well as Calypso
文摘Incorporating nitrogen(N)atom in graphene is considered a key technique for tuning its electrical properties.However,this is still a great challenge,and it is unclear how to build N-graphene with desired nitrogen configurations.There is a lack of experimental evidence to explain the influence and mechanism of structural defects for nitrogen incorporation into graphene compared to the derived DFT theories.Herein,this gap is bridged through a systematic study of different nitrogen-containing gaseous plasma post-treatments on graphene nanowalls(CNWs)to produce N-CNWs with incorporated and substituted nitrogen.The structural and morphological analyses describe a remarkable difference in the plasma–surface interaction,nitrogen concentration and nitrogen incorporation mechanism in CNWs by using different nitrogen-containing plasma.Electrical conductivity measurements revealed that the conductivity of the N-graphene is strongly influenced by the position and concentration of C–N bonding configurations.These findings open up a new pathway for the synthesis of N-graphene using plasma post-treatment to control the concentration and configuration of incorporated nitrogen for application-specific properties.