In this work, the transport and removal of Cr(Ⅵ) were achieved through supported liquid membrane(SLM) by using a 5,17, di-tert-butyl-11,23-bis[(1,4-dioxa-8-azaspiro [4,5]decanyl)methyl]-25,26,27,28-tetrahydroxy calix...In this work, the transport and removal of Cr(Ⅵ) were achieved through supported liquid membrane(SLM) by using a 5,17, di-tert-butyl-11,23-bis[(1,4-dioxa-8-azaspiro [4,5]decanyl)methyl]-25,26,27,28-tetrahydroxy calix[4]arene carrier, dissolved in 2-nitrophenyl octyl ether dichloromethane.The studied parameters are the solvent effect in the membrane phase, the effect of carrier concentration, and the acid type in the donor phase.The Celgard 2500 was used as a membrane support.We used the Danesi mass transfer model to calculate the permeability coefficients for each studied parameter.In addition, AFM and SEM techniques were used to characterize the surface morphology of the prepared Celgard 2500 membrane that included the calix[4]arene carrier.展开更多
基金supported financially by the Scientific Research Projects (BAP) of Pamukkale University, Denizli-Turkey (2013 FBE 045)
文摘In this work, the transport and removal of Cr(Ⅵ) were achieved through supported liquid membrane(SLM) by using a 5,17, di-tert-butyl-11,23-bis[(1,4-dioxa-8-azaspiro [4,5]decanyl)methyl]-25,26,27,28-tetrahydroxy calix[4]arene carrier, dissolved in 2-nitrophenyl octyl ether dichloromethane.The studied parameters are the solvent effect in the membrane phase, the effect of carrier concentration, and the acid type in the donor phase.The Celgard 2500 was used as a membrane support.We used the Danesi mass transfer model to calculate the permeability coefficients for each studied parameter.In addition, AFM and SEM techniques were used to characterize the surface morphology of the prepared Celgard 2500 membrane that included the calix[4]arene carrier.