期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Developing a phenomenological model to simulate single and mixed scale formation during flow in porous media:Coupling a salt precipitation model with an ion transport equation under dynamic conditions
1
作者 Erfan hosseini Dana Mohammad Nazar +1 位作者 negar hosseini Mohammad Sarmadivaleh 《Petroleum Research》 EI 2024年第1期17-36,共20页
Water flooding and pressure maintenance are recommended to improve oil recovery practices after low recovery of petroleum reservoirs occurs during primary production.Salt crystal formation is a frequent occurrence whe... Water flooding and pressure maintenance are recommended to improve oil recovery practices after low recovery of petroleum reservoirs occurs during primary production.Salt crystal formation is a frequent occurrence when using these techniques.Several experimental,numerical,and theoretical studies have been done on the mechanisms underlying scaling and permeability reduction in porous media;however,there has not been a satisfactory model developed.This study developed a phenomenological model to predict formation damage caused by salt deposition.Compared with existing models,which provide a scaling tendency,the proposed model predicts the profile of scale deposition.The salt precipitation model simulates reactive fluid flow through porous media.A thermodynamic,kinetic,and flow hydrodynamic model was developed and coupled with the ion transport equation to describe the movement of ions.Further,a set of carefully designed dynamic experiments were conducted and the data were compared with the model predictions.Model forecasts and experimental data were observed to have an average absolute error(AAE)ranging from 0.68%to 5.94%,which indicates the model's suitability. 展开更多
关键词 Improved oil recovery Water flooding Formation damage Scaling tendency Salt precipitation
原文传递
Wettability modification effects on relative permeability end-points:Comparative analysis of surfactant agents for enhanced oil recovery
2
作者 Erfan hosseini negar hosseini Mohammad Sarmadivaleh 《Petroleum Research》 EI 2024年第2期206-218,共13页
This research examines the impact of wettability alteration on the end points of relative permeability,a crucial property of fluids and porous media that influences the displacement processes of immiscible fluids thro... This research examines the impact of wettability alteration on the end points of relative permeability,a crucial property of fluids and porous media that influences the displacement processes of immiscible fluids through such media.The estimation of the mobility ratio for oil recovery relies on these end points,which are influenced by connate water saturation and residual oil saturation.To investigate this relationship,carbonate rock is generally subjected to wettability alteration using surfactant agents,and core flooding is employed to determine the relative permeability before and after the alteration.The wettability of the rock is commonly assessed through contact angle measurements.Two surfactants,TritonX-100(Tx-100)and Cedar,were tested in reducing the wettability of the porous media for oil.The contact angle measurements revealed that Tx-100 was more effective for this purpose than Cedar.Furthermore,the relative permeability tests indicated that both surfactants decreased residual oil saturation,but Tx-100 also improved system pressure.In contrast,Cedar reduced residual oil saturation but increased system pressure,possibly because of its high viscosity.The results also demonstrate that injecting Tx-100 leads to a 14%increase in ultimate oil recovery compared with water injection,while Cedar injection increased the recovery factor by 5%.This difference may be attributed to the incomplete coverage of the pore wall by Cedar or its weaker chemical structure than Tx-100.Notably,in carbonate cores,neither non-ionic surfactant enhanced oil recovery. 展开更多
关键词 Wettability alteration Relative permeability Core flooding Tx-100 Cedar Contact angle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部