Cellular immunotherapy harnesses the body’’s own immune system to fight cancer by using engineered T cells,macrophages,or natural killer(NK)cells.Compared to chimeric antigen receptor T(CAR-T)cells that are commonly...Cellular immunotherapy harnesses the body’’s own immune system to fight cancer by using engineered T cells,macrophages,or natural killer(NK)cells.Compared to chimeric antigen receptor T(CAR-T)cells that are commonly used to treat hematological malignancies,CAR-NK cells have shown remarkable therapeutic effectiveness while exhibiting enhanced safety,reduced risk of graft-versus-host disease,fewer side effects,and amplified antitumor efficacy.Preclinical trials have unveiled the high potential of adoptive CAR-NK cell therapy to curtail or even eliminate both hematological malignancies and solid tumors in animal models.We brought forth herein the design principle of CAR-NK cells,highlighted the latest progress in the preclinical testing and clinical trials of CAR-NK cells,briefly delved into discussed major roadblocks in CAR-NK therapy,and discussed potential solutions to surmount these challenges.Given the accelerated progress in both basic and translational studies on immune cell engineering,CAR-NK cell therapy promises to become a serious contender and important addition to the next-generation cell-based immunotherapy.展开更多
基金Cancer Prevention and Research Institute of Texas(Grant/Award Number:RP210070)National Cancer Institute(Grant/Award Number:R01CA232017)Welch Foundation(Grant/Award Number:BE-1913-20220331)。
文摘Cellular immunotherapy harnesses the body’’s own immune system to fight cancer by using engineered T cells,macrophages,or natural killer(NK)cells.Compared to chimeric antigen receptor T(CAR-T)cells that are commonly used to treat hematological malignancies,CAR-NK cells have shown remarkable therapeutic effectiveness while exhibiting enhanced safety,reduced risk of graft-versus-host disease,fewer side effects,and amplified antitumor efficacy.Preclinical trials have unveiled the high potential of adoptive CAR-NK cell therapy to curtail or even eliminate both hematological malignancies and solid tumors in animal models.We brought forth herein the design principle of CAR-NK cells,highlighted the latest progress in the preclinical testing and clinical trials of CAR-NK cells,briefly delved into discussed major roadblocks in CAR-NK therapy,and discussed potential solutions to surmount these challenges.Given the accelerated progress in both basic and translational studies on immune cell engineering,CAR-NK cell therapy promises to become a serious contender and important addition to the next-generation cell-based immunotherapy.