In this article, we consider a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and one sign- changing function. The existence and multiplic...In this article, we consider a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and one sign- changing function. The existence and multiplicity results of positive solutions are obtained by variational methods.展开更多
In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△...In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△)_(p)^(s)u+λV(x)|u|^(p-2)u=(∫_(R^(N))|U|^(P_(μ,S)^(*))/|x-y|^(μ)dy)|u|^(P_(μ,S)^(*))^(-2)u,x∈R^(N),where(-△)_(p)^(s)is the fractional p-Laplacian with 0<s<1<p,0<μ<N,N>ps,a,b>0,λ>0 is a parameter,V:R^(N)→R^(+)is a potential function,θ∈[1,2_(μ,s)^(*))and P_(μ,S)^(*)=pN-pμ/2/N-ps is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.We get the existence of infinitely many solutions for the above problem by using the concentration compactness principle and Krasnoselskii’s genus theory.To the best of our knowledge,our result is new even in Choquard-Kirchhoff-type equations involving the p-Laplacian case.展开更多
文摘In this article, we consider a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the critical Hardy-Sobolev exponent and one sign- changing function. The existence and multiplicity results of positive solutions are obtained by variational methods.
文摘In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△)_(p)^(s)u+λV(x)|u|^(p-2)u=(∫_(R^(N))|U|^(P_(μ,S)^(*))/|x-y|^(μ)dy)|u|^(P_(μ,S)^(*))^(-2)u,x∈R^(N),where(-△)_(p)^(s)is the fractional p-Laplacian with 0<s<1<p,0<μ<N,N>ps,a,b>0,λ>0 is a parameter,V:R^(N)→R^(+)is a potential function,θ∈[1,2_(μ,s)^(*))and P_(μ,S)^(*)=pN-pμ/2/N-ps is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.We get the existence of infinitely many solutions for the above problem by using the concentration compactness principle and Krasnoselskii’s genus theory.To the best of our knowledge,our result is new even in Choquard-Kirchhoff-type equations involving the p-Laplacian case.