The alkaline zinc-based batteries with high energy density are becoming a research hotspot.However,the poor cycle stability and low-rate performance limit their wide application.Herein,ultra-thin CoNiO2 nanosheet with...The alkaline zinc-based batteries with high energy density are becoming a research hotspot.However,the poor cycle stability and low-rate performance limit their wide application.Herein,ultra-thin CoNiO2 nanosheet with rich oxygen defects anchored on the vertically arranged Ni nanotube arrays(Od-CNO@Ni NTs)is used as a positive material for rechargeable alkaline Ni–Zn batteries.As the highly uniform Ni nanotube arrays provide a fast electron/ion transport path and abundant active sites,the Od-CNO@Ni NTs electrode delivers excellent capacity(432.7 mAh g^(−1))and rate capability(218.3 mAh g^(−1) at 60 A g^(−1)).Moreover,our Od-CNO@Ni NTs//Zn battery is capable of an ultra-long lifespan(93.0%of initial capacity after 5000 cycles),extremely high energy density of 547.5 Wh kg^(−1) and power density of 92.9 kW kg^(−1)(based on the mass of cathode active substance).Meanwhile,the theoretical calculations reveal that the oxygen defects can enhance the interaction between electrode surface and electrolyte ions,contributing to higher capacity.This work opens a reasonable idea for the development of ultra-durable,ultra-fast,and high-energy Ni–Zn battery.展开更多
The energy storage behaviors of MnO_(2) for aqueous Zn-MnO_(2) batteries mainly depend on the Zn^(2+)/H^(+)intercalation but are limited by poor ion/electron migration dynamics and stability.Herein,a strategy is propo...The energy storage behaviors of MnO_(2) for aqueous Zn-MnO_(2) batteries mainly depend on the Zn^(2+)/H^(+)intercalation but are limited by poor ion/electron migration dynamics and stability.Herein,a strategy is proposed that promoting proton migration kinetics ameliorates H^(+)storage activity by introducing Ni^(2+)intoγ-MnO_(2)(Ni-MnO_(2)).Ni^(2+)can lower the diffusion barrier of H^(+)and selectively induce the ion intercalation,thereby alleviating the electrostatic interaction with the lattice.Moreover,Ni^(2+)enables the adjacent[MnO6]octahedrons to have better electron conductivity.The Ni-MnO_(2) exhibits superior rate performance(nearly four times specific capacity compared with MnO_(2))and ultra-long-cycle stability(100%of capacity retention after 11000 cycles at 3.0 A g^(-1)).The calculation indicates that the Ni-MnO_(2) allows H^(+)migrate rapidly along the one-dimensional tunnel due to reduction of the activation energy caused by Ni^(2+)regulating,thus achieving excellent reaction kinetics.This work brings great potential for the development of high-performance aqueous Zn-MnO_(2) batteries.展开更多
High-rate battery-type cathode materials have attracted wide attention for advanced battery-supercapacitor hybrid(BSH)devices.Herein,a core-shell structure of the hollow mesoporous carbon spheres(HMCS)supported NiSe2 ...High-rate battery-type cathode materials have attracted wide attention for advanced battery-supercapacitor hybrid(BSH)devices.Herein,a core-shell structure of the hollow mesoporous carbon spheres(HMCS)supported NiSe2 nanosheets(HMCS/NiSe2)is constructed through two-step reactions.The HMCS/NiSe_(2)shows a max specific capacity of 1,153.5 C·g^(-1) at the current density of 1 A·g^(-1),and can remain at 774.5 C·g^(-1) even at 40 A·g^(-1)(the retention rate as high as 67.1%)and then the HMCS/NiSe_(2) electrode can keep 80.5%specific capacity after 5,000 cycles at a current density of 10 A·g^(-1).Moreover,the density functional theory(DFT)calculation confirmed that the introduction HMCS into NiSe_(2) made adsorption/desorption of OH-easier,which can achieve higher rate capability.The HMCS/NiSe_(2)//6 M KOH//HMCS hybrid device has energy density of 47.15 Wh·kg^(-1) and power density of 801.8 W·kg^(-1).This work provides a feasible electrode material with a high rate and its preparation method for high energy density and power density energy storage devices.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.52002122)the Science and Technology Department of Hubei Province(No.2019AAA038)+1 种基金the Project funded by China Postdoctoral Science Foundation(No.2021M690947)the Wuhan Yellow Crane Talent Program(No.2017-02).
文摘The alkaline zinc-based batteries with high energy density are becoming a research hotspot.However,the poor cycle stability and low-rate performance limit their wide application.Herein,ultra-thin CoNiO2 nanosheet with rich oxygen defects anchored on the vertically arranged Ni nanotube arrays(Od-CNO@Ni NTs)is used as a positive material for rechargeable alkaline Ni–Zn batteries.As the highly uniform Ni nanotube arrays provide a fast electron/ion transport path and abundant active sites,the Od-CNO@Ni NTs electrode delivers excellent capacity(432.7 mAh g^(−1))and rate capability(218.3 mAh g^(−1) at 60 A g^(−1)).Moreover,our Od-CNO@Ni NTs//Zn battery is capable of an ultra-long lifespan(93.0%of initial capacity after 5000 cycles),extremely high energy density of 547.5 Wh kg^(−1) and power density of 92.9 kW kg^(−1)(based on the mass of cathode active substance).Meanwhile,the theoretical calculations reveal that the oxygen defects can enhance the interaction between electrode surface and electrolyte ions,contributing to higher capacity.This work opens a reasonable idea for the development of ultra-durable,ultra-fast,and high-energy Ni–Zn battery.
基金supported by the National Natural Science Foundation of China(No.52002122)the Science and Technology Department of Hubei Province(No.2019AAA038)+1 种基金the Project funded by China Postdoctoral Science Foundation(No.2021M690947)the Wuhan Yellow Crane Talent Program(No.2017-02).
文摘The energy storage behaviors of MnO_(2) for aqueous Zn-MnO_(2) batteries mainly depend on the Zn^(2+)/H^(+)intercalation but are limited by poor ion/electron migration dynamics and stability.Herein,a strategy is proposed that promoting proton migration kinetics ameliorates H^(+)storage activity by introducing Ni^(2+)intoγ-MnO_(2)(Ni-MnO_(2)).Ni^(2+)can lower the diffusion barrier of H^(+)and selectively induce the ion intercalation,thereby alleviating the electrostatic interaction with the lattice.Moreover,Ni^(2+)enables the adjacent[MnO6]octahedrons to have better electron conductivity.The Ni-MnO_(2) exhibits superior rate performance(nearly four times specific capacity compared with MnO_(2))and ultra-long-cycle stability(100%of capacity retention after 11000 cycles at 3.0 A g^(-1)).The calculation indicates that the Ni-MnO_(2) allows H^(+)migrate rapidly along the one-dimensional tunnel due to reduction of the activation energy caused by Ni^(2+)regulating,thus achieving excellent reaction kinetics.This work brings great potential for the development of high-performance aqueous Zn-MnO_(2) batteries.
基金supported by the National Natural Science Foundation of China(No.52002122)the Science and Technology Department of Hubei Province(No.2019AAA038)+1 种基金the Wuhan Yellow Crane Talent Program(No.2017-02)received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No.823717-ESTEEM3.
文摘High-rate battery-type cathode materials have attracted wide attention for advanced battery-supercapacitor hybrid(BSH)devices.Herein,a core-shell structure of the hollow mesoporous carbon spheres(HMCS)supported NiSe2 nanosheets(HMCS/NiSe2)is constructed through two-step reactions.The HMCS/NiSe_(2)shows a max specific capacity of 1,153.5 C·g^(-1) at the current density of 1 A·g^(-1),and can remain at 774.5 C·g^(-1) even at 40 A·g^(-1)(the retention rate as high as 67.1%)and then the HMCS/NiSe_(2) electrode can keep 80.5%specific capacity after 5,000 cycles at a current density of 10 A·g^(-1).Moreover,the density functional theory(DFT)calculation confirmed that the introduction HMCS into NiSe_(2) made adsorption/desorption of OH-easier,which can achieve higher rate capability.The HMCS/NiSe_(2)//6 M KOH//HMCS hybrid device has energy density of 47.15 Wh·kg^(-1) and power density of 801.8 W·kg^(-1).This work provides a feasible electrode material with a high rate and its preparation method for high energy density and power density energy storage devices.