Nowadays, the productivity of ultra-precision machining is fundamentally limited by low feed rates because of the required accuracies in the nanometre range. An increase in motion dynamics leads to disturbances that a...Nowadays, the productivity of ultra-precision machining is fundamentally limited by low feed rates because of the required accuracies in the nanometre range. An increase in motion dynamics leads to disturbances that affect the toolpath’s accuracy. Existing control concepts are not able to reliably detect and compensate the deviations caused by increased dynamics. This paper compares modelling approaches for ultra-precision positioning systems aiming to predict and compensate occurring deviations.展开更多
文摘Nowadays, the productivity of ultra-precision machining is fundamentally limited by low feed rates because of the required accuracies in the nanometre range. An increase in motion dynamics leads to disturbances that affect the toolpath’s accuracy. Existing control concepts are not able to reliably detect and compensate the deviations caused by increased dynamics. This paper compares modelling approaches for ultra-precision positioning systems aiming to predict and compensate occurring deviations.