期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Study on the RF inductively coupled plasma spheroidization of refractory W and W-Ta alloy powders 被引量:3
1
作者 余晨帆 周鑫 +2 位作者 王殿政 neuyen van linh 刘伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第1期127-134,共8页
Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a for... Spherical powders with good flowability and high stacking density are mandatory for powder bed additive manufacturing. Nevertheless, the preparation of spherical refractory tungsten and tungsten alloy powders is a formidable task. In this paper, spherical refractory metal powders processed by high-energy stir ball milling and RF inductively coupled plasma were investigated. By utilizing the technical route, pure spherical tungsten powders were prepared successfully, the flowability increased from 10.7 s/50 g to 5.5 s/50 g and apparent density increased from 6.916 g cm-3 to 11.041 g cm-3. Alloying element tantalum can reduce the tendency to micro- crack during tungsten laser melting and rapid solidification process. Spherical W-6Ta (%wt) powders were prepared in this way, homogeneous dispersion of tantalum in a tungsten matrix occurred but a small amount of flake-like shape particles appeared after high-energy stir ball milling. The flake-like shape particles can hardly be spheroidized in subsequent RF inductively coupled plasma process, might result from the unique suspended state of flaky particles under complex electric and magnetic fields as well as plasma-particle heat exchange was different under various turbulence models. As a result, the flake-like shape particles cannot pass through the high-temperature area of thermal plasma torch and cannot be spheroidized properly. 展开更多
关键词 selective laser melting RF plasma spheroidization tungsten powders
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部