期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hydrogen roles approaching ideal electrical and optical properties for undoped and Al doped ZnO thin films
1
作者 Dung Van Hoang Nam Hoang Vu +5 位作者 nga thi do Anh Tuan Thanh Pham Truong Huu Nguyen Jer-Lai Kuo Thang Bach Phan Vinh Cao Tran 《Journal of Materiomics》 SCIE 2022年第1期123-135,共13页
This paper distinguished hydrogen roles to improve electron mobility and carrier concentration in ZnO and Al doped ZnO sputtered films.By combining experimental evidences and theoretical results,we find out that hydro... This paper distinguished hydrogen roles to improve electron mobility and carrier concentration in ZnO and Al doped ZnO sputtered films.By combining experimental evidences and theoretical results,we find out that hydrogen located at oxygen vacancy sites(H_(O))is the main factor gives rise to increase simultaneously mobility and carrier concentration which has not been mentioned before.Introducing appropriate hydrogen content during sputtering not only results in crystalline relaxation but also supports doping Al into ZnO,increasing carrier concentration and electron mobility in the film.First principles calculations confirmed hydrogen substitutional stability for oxygen vacancy,significantly reducing electron conductivity effective mass and hence increasing electron mobility.In particular,0.8%hydrogen partial pressure ratio achieved 61 cm^(2)V^(-1)s^(-1)maximum electron mobility,optical transmittance above 82%in visible and near-infrared regions,and 2×10^(20) cm^(-3)carrier concentrations for H-Al co-doped ZnO film.These values approach ideal electrical and optical properties for transparent conducting oxide films.The presence of one maximum electron mobility was attributed to competition between increasing mobility due to restoring effective electron mass and hydrogen passivation of native defects,and decreased electron mobility due to electron-phonon scattering. 展开更多
关键词 High electron mobility Hydrogen roles Passivation effects Effective electron mass DFT calculations Doped ZnO thin Film
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部