期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Cardiac Cell Therapy and Tissue Engineered with Autologous Bone Marrow Mesenchymal Cells Improve Myocardial Perfusion. An Evaluation by Pinhole Gated-SPECT
1
作者 nguyen tran Pierre-Yves MARIE +2 位作者 Philippe FRANKEN Jean-Fran·ois STOLTZ Jean-Pierre VILLEMOT 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期15-16,共2页
关键词 An Evaluation by Pinhole Gated-SPECT Cardiac Cell Therapy and Tissue Engineered with Autologous Bone Marrow Mesenchymal Cells Improve Myocardial Perfusion cell BMSCs
下载PDF
门静脉阻断对原发性肝癌荷瘤大鼠不同肝叶肿瘤生长的影响 被引量:2
2
作者 徐睿 袁玉峰 +3 位作者 Ahmet Ayav Laurent Bresler 刘志苏 nguyen tran 《中华实验外科杂志》 CAS CSCD 北大核心 2012年第5期847-850,共4页
目的观察在门静脉阻断术(PvL)后荷瘤大鼠不同肝叶肿瘤的生长。方法将27只雄性大鼠平均分为3组。A组为无荷瘤大鼠,B、c组为荷瘤大鼠。A组(对照组)和C组(实验组)大鼠行PVL术,B组为假手术组。分别于术后不同时段,应用正电子发射... 目的观察在门静脉阻断术(PvL)后荷瘤大鼠不同肝叶肿瘤的生长。方法将27只雄性大鼠平均分为3组。A组为无荷瘤大鼠,B、c组为荷瘤大鼠。A组(对照组)和C组(实验组)大鼠行PVL术,B组为假手术组。分别于术后不同时段,应用正电子发射计算机断层显像(PET—CT)测算不同肝叶上肿瘤生长的体积变化及肿瘤生长率。结果C组门静脉结扎肝叶上的肿瘤体积增生明显高于B组[(54.90±32.17)mm3比(28.41±11.04)mm3,P〈0.05],而无门静脉结扎肝叶上的肿瘤体积增生及肿瘤生长率差异无统计学意义(P〉0.05)。结论PVL术可加速大鼠门静脉结扎肝叶上肿瘤的生长,但不会促使无门静脉结扎肝叶上肿瘤生长的加速。 展开更多
关键词 门静脉阻断 肝肿瘤生长 正电子发射计算机断层显像
原文传递
Electrospun poly(vinylidene fluoride-trifluoroethylene)/ zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation 被引量:8
3
作者 Robin Augustine Pan Dan +6 位作者 Alejandro Sosnik Nandakumar Kalarikkal nguyen tran Brice Vincent Sabu Thomas Patrick Menu Didier Rouxel 《Nano Research》 SCIE EI CAS CSCD 2017年第10期3358-3376,共19页
Piezoelectric materials that generate electrical signals in response to mechanical strain can be used in tissue engineering to stimulate cell proliferation. Poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrF... Piezoelectric materials that generate electrical signals in response to mechanical strain can be used in tissue engineering to stimulate cell proliferation. Poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), a piezoelectric polymer, is widely used in biomaterial applications. We hypothesized that incorporation of zinc oxide (ZnO) nanoparticles into the P(VDF-TrFE) matrix could promote adhesion, migration, and proliferation of cells, as well as blood vessel formation (angiogenesis). In this study, we fabricated and comprehensively characterized a novel electrospun P(VDF-TrFE)/ZnO nanocomposite tissue engineering scaffold. We analyzed the morphological features of the polymeric matrix by scanning electron microscopy, and utilized Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry to examine changes in the crystalline phases of the copolymer due to addition of the nanoparticles. We detected no or minimal adverse effects of the biomaterials with regard to blood compatibility in vitro, biocompatibility, and cytotoxicity, indicating that P(VDF-TrFE)/ZnO nanocomposite scaffolds are suitable for tissue engineering applications. Interestingly, human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells cultured on the nanocomposite scaffolds exhibited higher cell viability, adhesion, and proliferation compared to cells cultured on tissue culture plates or neat P(VDF-TrFE) scaffolds. Nanocomposite scaffolds implanted into rats with or without hMSCs did not elicit immunological responses, as assessed by macroscopic analysis and histology. Importantly, nanocomposite scaffolds promoted angiogenesis, which was increased in scaffolds pre-seeded with hMSCs. Overall, our results highlight the potential of these novel P(VDF-TrFE)/ZnO nanocomposites for use in tissue engineering, due to their biocompatibility and ability to promote cell adhesion and angiogenesis. 展开更多
关键词 scaffolds ELECTROSPINNING poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ZnO angiogenesis cell adhesion stem cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部