In this paper,an integrated procedure is proposed to identify cracks in a portal framed structure made of functionally graded material(FGM)using stationary wavelet transform(SWT)and neural network(NN).Material propert...In this paper,an integrated procedure is proposed to identify cracks in a portal framed structure made of functionally graded material(FGM)using stationary wavelet transform(SWT)and neural network(NN).Material properties of the structure vary along the thickness of beam elements by the power law of volumn distribution.Cracks are assumed to be open and are modeled by double massless springs with stiffness calculated from their depth.The dynamic stiffness method(DSM)is developed to calculate the mode shapes of a cracked frame structure based on shape functions obtained as a general solution of vibration in multiple cracked FGM Timoshenko beams.The SWT of mode shapes is examined for localization of potential cracks in the frame structure and utilized as the input data of NN for crack depth identification.The integrated procedure proposed is shown to be very effective for accurately assessing crack locations and depths in FGM structures,even with noisy measured mode shapes and a limited amount of measured data.展开更多
基金Project supported by the Vietnam National Foundation for Science and Technology Development(No.107.02-2017.301)。
文摘In this paper,an integrated procedure is proposed to identify cracks in a portal framed structure made of functionally graded material(FGM)using stationary wavelet transform(SWT)and neural network(NN).Material properties of the structure vary along the thickness of beam elements by the power law of volumn distribution.Cracks are assumed to be open and are modeled by double massless springs with stiffness calculated from their depth.The dynamic stiffness method(DSM)is developed to calculate the mode shapes of a cracked frame structure based on shape functions obtained as a general solution of vibration in multiple cracked FGM Timoshenko beams.The SWT of mode shapes is examined for localization of potential cracks in the frame structure and utilized as the input data of NN for crack depth identification.The integrated procedure proposed is shown to be very effective for accurately assessing crack locations and depths in FGM structures,even with noisy measured mode shapes and a limited amount of measured data.