The actual effective partition coefficients of Mg and Cr in a cross-section of a dendrite arm in a direct-chill(DC)-casting ingot of 7475 aluminum alloy are obtained.Meanwhile,by analyzing the microstructure,the mecha...The actual effective partition coefficients of Mg and Cr in a cross-section of a dendrite arm in a direct-chill(DC)-casting ingot of 7475 aluminum alloy are obtained.Meanwhile,by analyzing the microstructure,the mechanism of the heterogeneous distribution of E(Al_(18)Mg_(3)Cr_(2))dispersoids in this DC ingot is revealed.The results show that the actual effective partition coefficients of Mg and Cr are 0.650 and 1.392,respectively,and they describe the heterogeneous distributions of Mg and Cr along the direction of radius of the cross-section of the dendrite arm of the alloy.After homogenization treatment at 470℃ for 24 h,Mg diffuses uniformly,but Cr hardly diffuses.Both the concentrations of Mg and Cr and the sites of heterogeneous nucleation in the alloy are the determinants of the formation of E dispersoids simultaneously.The heat treatment at 250℃ for 72 h provides a large number of the sites of heterogeneous nucleation of the formation of fine E dispersoids that will be formed in the center of the cross-section during the subsequent heat treatment at higher temperature.展开更多
目的:应用光学相干断层血管造影(OCTA)评估糖尿病视网膜病变(DR)患者中心凹无血管区(FAZ)和血管密度(VD)的变化。方法:对OCTA在DR诊断中的应用文献进行系统回顾。搜索Medline、Embase、Web of Science、PubMed、中国知网数据库、万方数...目的:应用光学相干断层血管造影(OCTA)评估糖尿病视网膜病变(DR)患者中心凹无血管区(FAZ)和血管密度(VD)的变化。方法:对OCTA在DR诊断中的应用文献进行系统回顾。搜索Medline、Embase、Web of Science、PubMed、中国知网数据库、万方数据库以查找相关研究,检索时间从建库截止到2020-09-20。仅检索中英文文献。两名研究者分别独立提取文献资料,包括浅层视网膜毛细血管层血管线性密度(VDSCP)、深层视网膜毛细血管层血管线性密度(VDDCP)、浅层FAZ面积和周长。绘制森林图、漏斗图,并采用Begg检验和敏感性分析,确保结果的准确性。结果:共检索得24篇文献,纳入2305眼。结果显示,糖尿病患者与健康对照组各指标均有差异(VDSCP:WMD=-5.78,95%CI:-7.67~-3.88,P<0.05;VDDCP:WMD=-5.08,95%CI:-6.49~-3.67,P<0.05;FAZ周长:WMD=0.57,95%CI:0.36~0.78,P<0.05;FAZ面积:WMD=0.08,95%CI:0.06~0.10,P<0.05)。结论:DR患者FAZ面积更大,周长更长,与DR患者对比,对照组FAZ的VD较高。虽然目前OCTA的实际适用性仍然存在问题,但随着技术的不断发展和改进,OCTA在DR中的诊断价值可能会变得明显。展开更多
The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron mic...The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected areaelectron diffraction (SAED), hardness and electrical conductivity tests. Results show that after quenching in different ways, electricalconductivity of the alloy decreases rapidly in the first 48 h of natural aging. The electrical conductivity of 7050 alloy in natural agingstate is determined by the size and density of GP zones, and the size of GP zones is the main factor. After natural aging for 70 d, thesize of GP zones is 1.8-2.6 nm in matrix of the immersion quenched sample and it is 1.4-1.8 nm in matrix of both water mist andforced air quenched samples. After natural and artificial peak aging, the hardness of the water mist quenched sample is HV 193.6 andits electrical conductivity is 30.5% (IACS) which are both higher than those of the immersion quenched sample. Therefore, watermist quenching is an ideal quenching method for 7050 alloy sheets after solid-solution treatment.展开更多
According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST soft...According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.展开更多
The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM ...The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.展开更多
Our previous studies have demonstrated that underwater friction stir additive manufacturing(FSAM)could effectively suppress the macroscale softening of the fabricated Al-Zn-Mg-Cu alloy build from top to bottom.However...Our previous studies have demonstrated that underwater friction stir additive manufacturing(FSAM)could effectively suppress the macroscale softening of the fabricated Al-Zn-Mg-Cu alloy build from top to bottom.However,the accompanying local softening problem,i.e.,a low-hardness region at the bottom of each stir zone,becomes prominent.In this study,an Al-Zn-Mg alloy with low quench sensitivity was used to fabricate a multilayered build via underwater FSAM.In-process water cooling could effectively solve the macroscale and local softening problems in the FSAM of the Al-Zn-Mg alloy and improve the mechanical performance of the build.The microhardness and ultimate tensile strength(UTS)of the water-cooled build in as-fabricated and aged states were more uniform along the building direction and higher than those of their counterparts.After 90 days of natural aging,the UTS of the water-cooled build in building and traveling directions reached 398 and 400 MPa,respectively,slightly higher than that of the base metal(392 MPa).The enhancement in the mechanical performance of the water-cooled build was attributed to a high degree of supersaturation and age-strengthening ability because of a high cooling rate of the underwater FSAM process and low quench sensitivity of the base metal.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51871043)Fundamental Research Funds for the Central Universities of China(No.N180212010)Liaoning Natural Science Foundation of China(No.2019-MS-113)。
文摘The actual effective partition coefficients of Mg and Cr in a cross-section of a dendrite arm in a direct-chill(DC)-casting ingot of 7475 aluminum alloy are obtained.Meanwhile,by analyzing the microstructure,the mechanism of the heterogeneous distribution of E(Al_(18)Mg_(3)Cr_(2))dispersoids in this DC ingot is revealed.The results show that the actual effective partition coefficients of Mg and Cr are 0.650 and 1.392,respectively,and they describe the heterogeneous distributions of Mg and Cr along the direction of radius of the cross-section of the dendrite arm of the alloy.After homogenization treatment at 470℃ for 24 h,Mg diffuses uniformly,but Cr hardly diffuses.Both the concentrations of Mg and Cr and the sites of heterogeneous nucleation in the alloy are the determinants of the formation of E dispersoids simultaneously.The heat treatment at 250℃ for 72 h provides a large number of the sites of heterogeneous nucleation of the formation of fine E dispersoids that will be formed in the center of the cross-section during the subsequent heat treatment at higher temperature.
文摘目的:应用光学相干断层血管造影(OCTA)评估糖尿病视网膜病变(DR)患者中心凹无血管区(FAZ)和血管密度(VD)的变化。方法:对OCTA在DR诊断中的应用文献进行系统回顾。搜索Medline、Embase、Web of Science、PubMed、中国知网数据库、万方数据库以查找相关研究,检索时间从建库截止到2020-09-20。仅检索中英文文献。两名研究者分别独立提取文献资料,包括浅层视网膜毛细血管层血管线性密度(VDSCP)、深层视网膜毛细血管层血管线性密度(VDDCP)、浅层FAZ面积和周长。绘制森林图、漏斗图,并采用Begg检验和敏感性分析,确保结果的准确性。结果:共检索得24篇文献,纳入2305眼。结果显示,糖尿病患者与健康对照组各指标均有差异(VDSCP:WMD=-5.78,95%CI:-7.67~-3.88,P<0.05;VDDCP:WMD=-5.08,95%CI:-6.49~-3.67,P<0.05;FAZ周长:WMD=0.57,95%CI:0.36~0.78,P<0.05;FAZ面积:WMD=0.08,95%CI:0.06~0.10,P<0.05)。结论:DR患者FAZ面积更大,周长更长,与DR患者对比,对照组FAZ的VD较高。虽然目前OCTA的实际适用性仍然存在问题,但随着技术的不断发展和改进,OCTA在DR中的诊断价值可能会变得明显。
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51371045)supported by the National Natural Science Foundation of China
文摘The effects of quenching in different ways following solid-solution treatment on properties and precipitation behaviors of7050 alloy were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), selected areaelectron diffraction (SAED), hardness and electrical conductivity tests. Results show that after quenching in different ways, electricalconductivity of the alloy decreases rapidly in the first 48 h of natural aging. The electrical conductivity of 7050 alloy in natural agingstate is determined by the size and density of GP zones, and the size of GP zones is the main factor. After natural aging for 70 d, thesize of GP zones is 1.8-2.6 nm in matrix of the immersion quenched sample and it is 1.4-1.8 nm in matrix of both water mist andforced air quenched samples. After natural and artificial peak aging, the hardness of the water mist quenched sample is HV 193.6 andits electrical conductivity is 30.5% (IACS) which are both higher than those of the immersion quenched sample. Therefore, watermist quenching is an ideal quenching method for 7050 alloy sheets after solid-solution treatment.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51371045)supported by the National Natural Science Foundation of China
文摘According to inverse heat transfer theory, the evolutions of synthetic surface heat transfer coefficient(SSHTC) of the quenching surface of 7B50 alloy during water-spray quenching were simulated by the Pro CAST software based on accurate cooling curves measured by the modified Jominy specimen and temperature-dependent thermo-physical properties of 7 B50 alloy calculated using the JMat Pro software. Results show that the average cooling rate at 6 mm from the quenching surface and 420-230 ℃(quench sensitive temperature range) is 45.78℃/s. The peak-value of the SSHTC is 69 kW/(m^2·K) obtained at spray quenching for 0.4 s and the corresponding temperature of the quenching surface is 160 ℃. In the initial stage of spray quenching, the phenomenon called "temperature plateau" appears on the cooling curve of the quenching surface. The temperature range of this plateau is 160-170℃ with the duration about 3 s. During the temperature plateau, heat transfer mechanism of the quenching surface transforms from nucleate boiling regime to single-phase convective regime.
基金Project(2016YFB0300801)supported by the National Key Research and Development Program of ChinaProject(51871043)supported by the National Natural Science Foundation of ChinaProject(N180212010)supported by the Fundamental Research Funds for the Central Universities of China。
文摘The effects of Si content on the microstructure and yield strength of Al-(1.44-12.40)Si-0.7 Mg(wt.%)alloy sheets under the T4 condition were systematically studied via laser scanning confocal microscopy(LSCM),DSC,TEM and tensile tests.The results show that the recrystallization grain of the alloy sheets becomes more refined with an increase in Si content.When the Si content increases from 1.44 to 12.4 wt.%,the grain size of the alloy sheets decreases from approximately 47 to 10μm.Further,with an increase in Si content,the volume fraction of the GP zones in the matrix increases slightly.Based on the existing model,a yield strength model for alloy sheets was proposed.The predicted results are in good agreement with the actual experimental results and reveal the strengthening mechanisms of the Al-(1.44-12.40)Si-0.7 Mg alloy sheets under the T4 condition and how they are influenced by the Si content.
基金financially supported by the Project of Promoting Talents in Liaoning Province(No.XLYC1808038)。
文摘Our previous studies have demonstrated that underwater friction stir additive manufacturing(FSAM)could effectively suppress the macroscale softening of the fabricated Al-Zn-Mg-Cu alloy build from top to bottom.However,the accompanying local softening problem,i.e.,a low-hardness region at the bottom of each stir zone,becomes prominent.In this study,an Al-Zn-Mg alloy with low quench sensitivity was used to fabricate a multilayered build via underwater FSAM.In-process water cooling could effectively solve the macroscale and local softening problems in the FSAM of the Al-Zn-Mg alloy and improve the mechanical performance of the build.The microhardness and ultimate tensile strength(UTS)of the water-cooled build in as-fabricated and aged states were more uniform along the building direction and higher than those of their counterparts.After 90 days of natural aging,the UTS of the water-cooled build in building and traveling directions reached 398 and 400 MPa,respectively,slightly higher than that of the base metal(392 MPa).The enhancement in the mechanical performance of the water-cooled build was attributed to a high degree of supersaturation and age-strengthening ability because of a high cooling rate of the underwater FSAM process and low quench sensitivity of the base metal.