The cytochrome b_(6f)(Cyt b_(6f))complex is a multisubunit protein complex in chloroplast thylakoid membranes required for photosynthetic electron transport.Here we report the isolation and characterization of the new...The cytochrome b_(6f)(Cyt b_(6f))complex is a multisubunit protein complex in chloroplast thylakoid membranes required for photosynthetic electron transport.Here we report the isolation and characterization of the new tiny albino 1(nta1)mutant in Arabidopsis,which has severe defects in Cyt b_(6f) accumulation and chloroplast development.Gene cloning revealed that the nta1 phenotype was caused by disruption of a single nuclear gene,NTA1,which encodes an integral thylakoid membrane protein conserved across green algae and plants.Overexpression of NTA1 completely rescued the nta1 phenotype,and knockout of NTA1 in wild-type plants recapitulated the mutant phenotype.Loss of NTA1 function severely impaired the accumulation of multiprotein complexes related to photosynthesis in thylakoid membranes,particularly the components of Cyt b_(6f).NTA1 was shown to directly interact with four subunits(Cyt b6/PetB,PetD,PetG,and PetN)of Cyt b_(6f) through the DUF1279 domain and C-terminal sequence to mediate their assembly.Taken together,our results identify NTA1 as a new and key regulator of chloroplast development that plays essential roles in assembly of the Cyt b_(6f) complex by interacting with multiple Cyt b_(6f) subunits.展开更多
基金supported by the General Research Fund(CUHK codes 14121915,14148916,and 14104521)the Area of Excellence Scheme(AoE/M-403/16 and AoE/M-05/12)of the Research Grants Council(RGC)of Hong Kong+1 种基金the National Natural Science Foundation of China(NSFC)-RGC Joint Scheme(N_CUHK452/17)direct grants from the Chinese University of Hong Kong(CUHK).
文摘The cytochrome b_(6f)(Cyt b_(6f))complex is a multisubunit protein complex in chloroplast thylakoid membranes required for photosynthetic electron transport.Here we report the isolation and characterization of the new tiny albino 1(nta1)mutant in Arabidopsis,which has severe defects in Cyt b_(6f) accumulation and chloroplast development.Gene cloning revealed that the nta1 phenotype was caused by disruption of a single nuclear gene,NTA1,which encodes an integral thylakoid membrane protein conserved across green algae and plants.Overexpression of NTA1 completely rescued the nta1 phenotype,and knockout of NTA1 in wild-type plants recapitulated the mutant phenotype.Loss of NTA1 function severely impaired the accumulation of multiprotein complexes related to photosynthesis in thylakoid membranes,particularly the components of Cyt b_(6f).NTA1 was shown to directly interact with four subunits(Cyt b6/PetB,PetD,PetG,and PetN)of Cyt b_(6f) through the DUF1279 domain and C-terminal sequence to mediate their assembly.Taken together,our results identify NTA1 as a new and key regulator of chloroplast development that plays essential roles in assembly of the Cyt b_(6f) complex by interacting with multiple Cyt b_(6f) subunits.