Comprehensive Summary Carbohelicenes have garnered considerable attention for their inherent chirality and structural flexibility.Increasing multi-helicity and incorporating non-six-membered rings to substitute benzen...Comprehensive Summary Carbohelicenes have garnered considerable attention for their inherent chirality and structural flexibility.Increasing multi-helicity and incorporating non-six-membered rings to substitute benzenoid rings within helicenes are effective strategies for introducing unique photoelectric properties.Despite the disclosure of numerous helicenes,the inaccessible precursors and the lack of synthetic routes pose a challenge in achieving desired helicene structures fused with non-benzenoid rings.Herein,we report the synthesis of multiple non-benzenoid carbohelicenes fused with fluorene unit(s)through intramolecular cyclodehydrogenation of 9,10-di(naphthalen-1-yl)anthracene on Au(111)surface.Two potential cyclodehydrogenation manners between naphthyl and anthracene lead to the formation of fluorene-fused[5]helicene and[4]helicene moiety.Consequently,a total of four stable products were observed.The atomic topographies of products are characterized by bond-resolving scanning tunneling microscopy.The chiral helicity of targeted products can be switched by tip manipulation.Density-functional-theory calculations unveils the reaction pathway of four products.The comparative analysis of their respective energy barriers exhibits a correlation with the experimentally determined yields.Furthermore,we synthesize the polymer chains incorporating non-benzenoid carbohelicenes via the Ullmann reaction of 2,6-dibromo-9,10-di(1-naphthyl)anthracene precursors.Our work proposes a synthetic methodology for several novel helicene-like structures fused with fluorene units and the polymer bearing helicene subunits,thus highlighting the immense potential of these compounds in the application fields of luminescent electronic devices.展开更多
We study modulation properties of two-element phased-array semiconductor lasers that can be described by coupled mode theory. We consider four different waveguide structures and modulate the array either in phase or o...We study modulation properties of two-element phased-array semiconductor lasers that can be described by coupled mode theory. We consider four different waveguide structures and modulate the array either in phase or out of phase within the phase-locked regions, guided by stability diagrams obtained from direct numerical simulations. Specifically, we find that out-of-phase modulation allows for bandwidth enhancement if the waveguide structure is properly chosen; for example, for a combination of index antiguiding and gain-guiding, the achievable modulation bandwidth in the case of out-of-phase modulation could be much higher than the one when they are modulated in phase. Proper array design of the coupling, controllable in terms of the laser separation and the frequency offset between the two lasers, is shown to be beneficial to slightly improve the bandwidth but not the resonance frequency, while the inclusion of the frequency offset leads to the appearance of double peak response curves. For comparison, we explore the case of modulating only one element of the phased array and find that double peak response curves are found. To improve the resonance frequency and the modulation bandwidth, we introduce simultaneous external injection into the phased array and modulate the phased array or its master light within the injection locking region. We observe a significant improvement of the modulation properties, and in some cases, by modulating the amplitude of the master light before injection,the resulting 3 dB bandwidths could be enhanced up to 160 GHz. Such a record bandwidth for phased-array modulation could pave the way for various applications, notably optical communications that require high-speed integrated photonic devices.展开更多
Comprehensive Summary Kagome lattices have garnered significant attention due to their promising applications in catalysis,electronics,and magnetics.Although many efforts have been paid to the design and synthesis of ...Comprehensive Summary Kagome lattices have garnered significant attention due to their promising applications in catalysis,electronics,and magnetics.Although many efforts have been paid to the design and synthesis of Kagome lattices,there is a limited focus on constructing this lattice by multiple interaction forces.In this work,we employ 2,7-dibromo-carbazole as precursors to successfully fabricate the two-dimensional self-assembly Kagome lattices stabled by multiple interaction forces on Au(111)substrate.Using low-temperature scanning tunneling microscopy,non-contact atomic force microscopy and density functional theory calculation,we visualize and identify the four interaction forces within Kagome lattices:Au—N coordination bonds,Au—H hydrogen bonds,Br—Br halogen bonds,and Br—H hydrogen bonds,respectively.This study provides a basic understanding for designing and constructing more complex Kagome lattices.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62271238,22372074,62301240)Yunnan Fundamental Research Projects(Nos.202201AT070078,202201BE070001-009 and 202301AW070017)+3 种基金the Major Basic Research Project of Science and Technology of Yunnan(202302AG050007)Yunnan Innovation Team of Graphene Mechanism Research and Application Industrialization(202305AS350017)Graphene Application and Engineering Research Centre of Education Department of Yunnan Providence(KKPP202351001)the Analysis and Testing Foundation of KUST(2021T20170056).
文摘Comprehensive Summary Carbohelicenes have garnered considerable attention for their inherent chirality and structural flexibility.Increasing multi-helicity and incorporating non-six-membered rings to substitute benzenoid rings within helicenes are effective strategies for introducing unique photoelectric properties.Despite the disclosure of numerous helicenes,the inaccessible precursors and the lack of synthetic routes pose a challenge in achieving desired helicene structures fused with non-benzenoid rings.Herein,we report the synthesis of multiple non-benzenoid carbohelicenes fused with fluorene unit(s)through intramolecular cyclodehydrogenation of 9,10-di(naphthalen-1-yl)anthracene on Au(111)surface.Two potential cyclodehydrogenation manners between naphthyl and anthracene lead to the formation of fluorene-fused[5]helicene and[4]helicene moiety.Consequently,a total of four stable products were observed.The atomic topographies of products are characterized by bond-resolving scanning tunneling microscopy.The chiral helicity of targeted products can be switched by tip manipulation.Density-functional-theory calculations unveils the reaction pathway of four products.The comparative analysis of their respective energy barriers exhibits a correlation with the experimentally determined yields.Furthermore,we synthesize the polymer chains incorporating non-benzenoid carbohelicenes via the Ullmann reaction of 2,6-dibromo-9,10-di(1-naphthyl)anthracene precursors.Our work proposes a synthetic methodology for several novel helicene-like structures fused with fluorene units and the polymer bearing helicene subunits,thus highlighting the immense potential of these compounds in the application fields of luminescent electronic devices.
基金Engineering and Physical Sciences Research Council(EPSRC)(EP/M024237/1)
文摘We study modulation properties of two-element phased-array semiconductor lasers that can be described by coupled mode theory. We consider four different waveguide structures and modulate the array either in phase or out of phase within the phase-locked regions, guided by stability diagrams obtained from direct numerical simulations. Specifically, we find that out-of-phase modulation allows for bandwidth enhancement if the waveguide structure is properly chosen; for example, for a combination of index antiguiding and gain-guiding, the achievable modulation bandwidth in the case of out-of-phase modulation could be much higher than the one when they are modulated in phase. Proper array design of the coupling, controllable in terms of the laser separation and the frequency offset between the two lasers, is shown to be beneficial to slightly improve the bandwidth but not the resonance frequency, while the inclusion of the frequency offset leads to the appearance of double peak response curves. For comparison, we explore the case of modulating only one element of the phased array and find that double peak response curves are found. To improve the resonance frequency and the modulation bandwidth, we introduce simultaneous external injection into the phased array and modulate the phased array or its master light within the injection locking region. We observe a significant improvement of the modulation properties, and in some cases, by modulating the amplitude of the master light before injection,the resulting 3 dB bandwidths could be enhanced up to 160 GHz. Such a record bandwidth for phased-array modulation could pave the way for various applications, notably optical communications that require high-speed integrated photonic devices.
基金supported by the National Natural Science Foundation of China(Nos.62271238,22372074,62301240)Yunnan Fundamental Research Projects(Nos.202201AT070078,202201BE070001-009 and 202301AW070017)+2 种基金the Major Basic Research Project of Science and Technology of Yunnan(202302AG050007)Yunnan Innovation Team of Graphene Mechanism Research and Application Industrialization(202305AS350017)Graphene Application and Engineering Research Centre of Education Department of Yunnan Providence(KKPP202351001).
文摘Comprehensive Summary Kagome lattices have garnered significant attention due to their promising applications in catalysis,electronics,and magnetics.Although many efforts have been paid to the design and synthesis of Kagome lattices,there is a limited focus on constructing this lattice by multiple interaction forces.In this work,we employ 2,7-dibromo-carbazole as precursors to successfully fabricate the two-dimensional self-assembly Kagome lattices stabled by multiple interaction forces on Au(111)substrate.Using low-temperature scanning tunneling microscopy,non-contact atomic force microscopy and density functional theory calculation,we visualize and identify the four interaction forces within Kagome lattices:Au—N coordination bonds,Au—H hydrogen bonds,Br—Br halogen bonds,and Br—H hydrogen bonds,respectively.This study provides a basic understanding for designing and constructing more complex Kagome lattices.