期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bioinspired-Interpenetrating Network (IPNs) Hydrogel (BIOF-INPs) and TMD <i>in Vitro</i>: Bioadhesion, Drug Release and Build in Free Radical Detection and Defense 被引量:1
1
作者 Victoria Tamara Perchyonok Vanessa Reher +2 位作者 nicolaas j. basson Shengmiao Zhang Sias R. Grobler 《Open Journal of Stomatology》 2015年第3期53-61,共9页
In this work, Bioactive-functionalized interpenetrating network (IPNs) hydrogel (BIOF-INPs) were prepared and investigated in vitro for the free radical detection/defense, therapeutic release as well as shear bond str... In this work, Bioactive-functionalized interpenetrating network (IPNs) hydrogel (BIOF-INPs) were prepared and investigated in vitro for the free radical detection/defense, therapeutic release as well as shear bond strength to dentine, ability to re-mineralize surface of the dentin after application of these bio-inspired materials using a biologically inspired mineralization process in vitro as well as investigating antimicrobial properties of the BIOF-INPs against S. aureous. The aim of this investigation was to evaluate the suitability and flexibility of the designer materials to act as an “in vitro” probe to gain insights into molecular origin of TMD and associated disorders. 展开更多
关键词 TMD Functionalized IPNS Bio-Adhesion Drug Release BUILD in Free Radical DETECTION and DEFENSE
下载PDF
Insights into chitosan based gels as functional restorative biomaterials prototypes: <i>In vitro</i>approach
2
作者 Victoria Tamara Perchyonok Shengmiao Zhang +3 位作者 nicolaas j. basson Sias Grobler Theunis Oberholzer Ward Massey 《Open Journal of Stomatology》 2013年第9期22-30,共9页
Restorative materials in the new era aim to be “bioactive” and long-lasting. The purpose of the study was to design and evaluate novel chitosan hydrogels containing melatonin and/or propolis (antioxidant containing ... Restorative materials in the new era aim to be “bioactive” and long-lasting. The purpose of the study was to design and evaluate novel chitosan hydrogels containing melatonin and/or propolis (antioxidant containing material), nystatin (antifungal), naproxen (pain relieve medication) and combinations thereof (chitosan-H-melatonin, chitosan-H-melatonin-naproxen, chitosan-H-propolis, chitosan-H-propolisnaproxen, chitosan-H-naproxen-propolis-melatonin, Chitosan/Propolis/Nystatin, Chitosan/Melatonin/Propolis/Nystatin, Chitosan/Propolis/BSA/Nystatin, Chitosan/Melatonin/BSA/Nystatin) as functional additive prototypes for further development of “dual function restorative materials”, to determine their effect on the dentin bond strength of a composite, to evaluate stability of the encapsulated antioxidants as well as evaluate antimicrobial properties of the selected group of “designer” functional materials. Materials and Methods: The above mentioned hydrogels were prepared by dispersion of the corresponding component in glycerol and acetic acid with the addition of chitosan gelling agent. The surface morphology (SEM), drug-polymer solid state interaction (FT-IR spectroscopy), released behaviours (physiological pH and also in acidic conditions), stability of the therapeutic agent-antioxidant-chitosan and the effect of the hydrogels on the shear bond strength of dentin were also evaluated. Results: The release of naproxen confers the added benefit of synergistic action of a functional therapeutic delivery when comparing the newly designed chitosan-based hydrogel restorative materials to the commercially available products alone. Neither the release of naproxen or the antioxidant stability was affected by storage over a 6-month period. The hydrogel formulations have a uniform distribution of drug content, homogenous texture and yellow colour (SEM study). All chitosan dentin treated hydrogels gave significantly 展开更多
关键词 Therapeutic Polymers Adhesives CHITOSAN Hydrogels PROPOLIS Melatonin NAPROXEN Antimicrobial Dentin Bonding Antioxidants Bioactive
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部