期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
主题模型在基于社交媒体的灾害分类中的应用及比较
被引量:
14
1
作者
苏凯
程昌秀
+1 位作者
nikita murzintcev
张婷
《地球信息科学学报》
CSCD
北大核心
2019年第8期1152-1160,共9页
“一带一路”沿线为自然灾害高发地区,且多为经济欠发达、抗灾能力弱的发展中国家。灾害发生时,挖掘和分析相关推特数据有助于开展应急救援、灾情评估、减灾防灾等工作,为中国国际救援与救助工作提供重要支撑。主题模型能在没有经验语...
“一带一路”沿线为自然灾害高发地区,且多为经济欠发达、抗灾能力弱的发展中国家。灾害发生时,挖掘和分析相关推特数据有助于开展应急救援、灾情评估、减灾防灾等工作,为中国国际救援与救助工作提供重要支撑。主题模型能在没有经验语料库的情况下,从海量灾害相关推文中快速聚合出对灾害救援、评估有价值的信息。本文采用BTM模型和LDA模型,对2013年海燕台风相关推文进行细粒度的主题聚类,分析2个模型的精度并测试它们对近似灾害主题的区分能力,并基于“需求相关”主题类的推文,通过地名匹配,分析了海燕台风发生过程中菲律宾物资、医疗等需求程度的空间分布。结果表明:①在区分主题近似的短文本时,BTM总体精度为0.598.LDA的总体精度仅为0.321,说明在海燕台风灾害推文的主题识别中,BTM模型的精度高于LDA模型;②BTM能够较好识别出“灾害地点相关”、“祈福相关”等较为精细的灾害主题;③经初步验证,基于“需求相关”主题文本生成的物资、医疗等需求的需求程度空间分布与实际需求情况基本相符。
展开更多
关键词
主题模型
BTM
LDA
推文
主题分类
自然灾害
应急管理
原文传递
题名
主题模型在基于社交媒体的灾害分类中的应用及比较
被引量:
14
1
作者
苏凯
程昌秀
nikita murzintcev
张婷
机构
北京师范大学地理科学学部
中国科学院地理科学与资源研究所
出处
《地球信息科学学报》
CSCD
北大核心
2019年第8期1152-1160,共9页
基金
国家重点研发计划项目(2017YFB0504102)
中央高校基本科研业务费专项资金资助~~
文摘
“一带一路”沿线为自然灾害高发地区,且多为经济欠发达、抗灾能力弱的发展中国家。灾害发生时,挖掘和分析相关推特数据有助于开展应急救援、灾情评估、减灾防灾等工作,为中国国际救援与救助工作提供重要支撑。主题模型能在没有经验语料库的情况下,从海量灾害相关推文中快速聚合出对灾害救援、评估有价值的信息。本文采用BTM模型和LDA模型,对2013年海燕台风相关推文进行细粒度的主题聚类,分析2个模型的精度并测试它们对近似灾害主题的区分能力,并基于“需求相关”主题类的推文,通过地名匹配,分析了海燕台风发生过程中菲律宾物资、医疗等需求程度的空间分布。结果表明:①在区分主题近似的短文本时,BTM总体精度为0.598.LDA的总体精度仅为0.321,说明在海燕台风灾害推文的主题识别中,BTM模型的精度高于LDA模型;②BTM能够较好识别出“灾害地点相关”、“祈福相关”等较为精细的灾害主题;③经初步验证,基于“需求相关”主题文本生成的物资、医疗等需求的需求程度空间分布与实际需求情况基本相符。
关键词
主题模型
BTM
LDA
推文
主题分类
自然灾害
应急管理
Keywords
Topic model
BTM
LDA
Tweet
Topic categorization
Natural hazard
Emergency management
分类号
P444 [天文地球—大气科学及气象学]
P429 [天文地球—大气科学及气象学]
原文传递
题名
作者
出处
发文年
被引量
操作
1
主题模型在基于社交媒体的灾害分类中的应用及比较
苏凯
程昌秀
nikita murzintcev
张婷
《地球信息科学学报》
CSCD
北大核心
2019
14
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部