We consider a model with multi-charged particles,including vector-like fermions,and a charged scalar under a local U(1)_(μ−τ) symmetry.We search for an allowed parameter region explaining muon anomalous magnetic mom...We consider a model with multi-charged particles,including vector-like fermions,and a charged scalar under a local U(1)_(μ−τ) symmetry.We search for an allowed parameter region explaining muon anomalous magnetic moment(muon g−2)and b→sℓ^(+)ℓ^(−) anomalies,satisfying constraints from the lepton flavor violations,Z boson decays,meson anti-meson mixing,and collider experiments.Via numerical analysis,we explore the typical size of the muon g−2 and Wilson coefficients to explain the b→sℓ^(+)ℓ^(−) anomalies in our model when all other experimental constraints are satisfied.Subsequently,we discuss the collider physics of the multicharged vectorlike fermions,considering a number of benchmark points in the allowed parameter space.展开更多
基金supported by an appointment to the JRG Program at the APCTP through the Science and Technology Promotion Fund and Lottery Fund of the Korean Government。
文摘We consider a model with multi-charged particles,including vector-like fermions,and a charged scalar under a local U(1)_(μ−τ) symmetry.We search for an allowed parameter region explaining muon anomalous magnetic moment(muon g−2)and b→sℓ^(+)ℓ^(−) anomalies,satisfying constraints from the lepton flavor violations,Z boson decays,meson anti-meson mixing,and collider experiments.Via numerical analysis,we explore the typical size of the muon g−2 and Wilson coefficients to explain the b→sℓ^(+)ℓ^(−) anomalies in our model when all other experimental constraints are satisfied.Subsequently,we discuss the collider physics of the multicharged vectorlike fermions,considering a number of benchmark points in the allowed parameter space.