期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Damping controller design based on FO-PID-EMA in VSC HVDC system to improve stability of hybrid power system 被引量:2
1
作者 nima shafaghatian Arvin KIANI +2 位作者 Naser TAHERI Zahra RAHIMKHANI Seyyed Saeed MASOUMI 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第2期403-417,共15页
Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system... Wind energy sources have different structures and functions from conventional power plants in the power system.These resources can affect the exchange of active and reactive power of the network.Therefore,power system stability will be affected by the performance of wind power plants,especially in the event of a fault.In this paper,the improvement of the dynamic stability in power system equipped by wind farm is examined through the supplementary controller design in the high voltage direct current(HVDC)based on voltage source converter(VSC)transmission system.In this regard,impacts of the VSC HVDC system and wind farm on the improvement of system stability are considered.Also,an algorithm based on controllability(observability)concept is proposed to select most appropriate and effective coupling between inputs-outputs(IO)signals of system in different work conditions.The selected coupling is used to apply damping controller signal.Finally,a fractional order PID controller(FO-PID)based on exchange market algorithm(EMA)is designed as damping controller.The analysis of the results shows that the wind farm does not directly contribute to the improvement of the dynamic stability of power system.However,it can increase the controllability of the oscillatory mode and improve the performance of the supplementary controller. 展开更多
关键词 hybrid power system high voltage direct current based on voltage source converter(VSC HVDC) fractional order PID(FO-PID)damping controller exchange market algorithm
下载PDF
Optimization of synchronized frequency and voltage control for a distributed generation system using the Black Widow Optimization algorithm 被引量:1
2
作者 Baran Sadeghi nima shafaghatian +3 位作者 Reza Alayi Mamdouh El Haj Assad Farhad Zishan Hasan Hosseinzadeh 《Clean Energy》 EI 2022年第1期105-118,共14页
A distributed generation network could be a hybrid power system that includes wind-diesel power generation based on induction generators(IGs)and synchronous generators(SGs).The main advantage of these systems is the p... A distributed generation network could be a hybrid power system that includes wind-diesel power generation based on induction generators(IGs)and synchronous generators(SGs).The main advantage of these systems is the possibility of using renewable energy in their structures.The most important challenge is to design the voltage-control loop with the frequency-control loop to obtain optimal responses for voltage and frequency deviations.In this work,the voltage-control loop is designed by an automatic voltage regulator.A linear model of the hybrid system has also been developed with coordinated voltage and frequency control.Dynamic frequency response and voltage deviations are compared for different load disturbances and different reactive loads.The gains of the SG and the static volt-ampere reactive compensator(SVC)controllers in the IG terminal are calculated using the Black Widow Optimization(BWO)algorithm to insure low frequency and voltage deviations.The BWO optimization algorithm is one of the newest and most powerful optimization methods to have been introduced so far.The results showed that the BWO algorithm has a good speed in solving the proposed objective function.A 22%improvement in time adjustment was observed in the use of an optimal SVC.Also,an 18%improvement was observed in the transitory values. 展开更多
关键词 MICROGRID voltage and frequency control Black Widow Optimization algorithm dynamic response smart grid
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部