Based on a small perturbation stability model for periodic flow,the effects of inlet total temperature ramp distortion on the axial compressor are investigated and the compressor stability is quantitatively evaluated....Based on a small perturbation stability model for periodic flow,the effects of inlet total temperature ramp distortion on the axial compressor are investigated and the compressor stability is quantitatively evaluated.In the beginning,a small perturbation stability model for the periodic flow in compressors is proposed,referring to the governing equations of the Harmonic Balance Method.This stability model is validated on a single-stage low-speed compressor TA36 with uniform inlet flow.Then,the unsteady flow of TA36 with different inlet total temperature ramps and constant back pressure is simulated based on the Harmonic Balance Method.Based on these simulations,the compressor stability is analyzed using the proposed small perturbation model.Further,the Dynamic Mode Decomposition method is employed to accurately extract pressure oscillations.The two parameters of the temperature ramp,ramp rate and Strouhal number,are discussed in this paper.The results indicate the occurrence and extension of hysteresis loops in the rows,and a decrease in compressor stability with increasing ramp rate.Compressor performance is divided into two phases,stable and limit,based on the ramp rate.Furthermore,the model predictions suggest that a decrease in period length and an increase in Strouhal number lead to improved compressor stability.The DMD results imply that for compressors with inlet temperature ramp distortion,the increase of high-order modes and oscillations at the rotor tip is always the signal of decreasing stability.展开更多
The steady calculation based on the mixing-plane method is still the most widely-used three-dimensional flow analysis tool for multistage turbomachines. For modern turbomachines,the trend of design is to reach higher ...The steady calculation based on the mixing-plane method is still the most widely-used three-dimensional flow analysis tool for multistage turbomachines. For modern turbomachines,the trend of design is to reach higher aerodynamic loading but with still further compact size. In such a case, the traditional mixing-plane method has to be revised to give a more physically meaningful prediction. In this paper, a novel mixing-plane method was proposed, and three representative test cases including a transonic compressor, a highly-loaded centrifugal compressor and a highpressure axial turbine were performed for validation purpose. This novel mixing-plane method can satisfy the flux conservation perfectly. Reverse flow across the mixing-plane interface can be resolved naturally, thus making this method numerically robust. Artificial reflection at the mixing-plane interface is almost eliminated, and then its detrimental impact on the flow field is minimized. Generally, this mixing-plane method is suitable to simulate steady flows in highly-loaded multistage turbomachines.展开更多
基金supported by National Natural Science Foundation of China(NSFC Grant Nos.52306036,52325602)Science Center for Gas Turbine Project(P2022-A-Ⅱ-002-001,P2022-C-Ⅱ-003-001)+3 种基金Project funded by China Postdoctoral Science Foundation(2022M720346)National Science and Technology Major Project(Y2022-Ⅱ-0003-0006,Y2022-Ⅱ-0002-0005).Alsothe research is supported by the Key Laboratory of Pre-Research Management Centre(No.6142702200101)the Fundamental Research Funds for the Central Universities(YWF-23-Q-1009,YWF-23-Q-1065)。
文摘Based on a small perturbation stability model for periodic flow,the effects of inlet total temperature ramp distortion on the axial compressor are investigated and the compressor stability is quantitatively evaluated.In the beginning,a small perturbation stability model for the periodic flow in compressors is proposed,referring to the governing equations of the Harmonic Balance Method.This stability model is validated on a single-stage low-speed compressor TA36 with uniform inlet flow.Then,the unsteady flow of TA36 with different inlet total temperature ramps and constant back pressure is simulated based on the Harmonic Balance Method.Based on these simulations,the compressor stability is analyzed using the proposed small perturbation model.Further,the Dynamic Mode Decomposition method is employed to accurately extract pressure oscillations.The two parameters of the temperature ramp,ramp rate and Strouhal number,are discussed in this paper.The results indicate the occurrence and extension of hysteresis loops in the rows,and a decrease in compressor stability with increasing ramp rate.Compressor performance is divided into two phases,stable and limit,based on the ramp rate.Furthermore,the model predictions suggest that a decrease in period length and an increase in Strouhal number lead to improved compressor stability.The DMD results imply that for compressors with inlet temperature ramp distortion,the increase of high-order modes and oscillations at the rotor tip is always the signal of decreasing stability.
文摘The steady calculation based on the mixing-plane method is still the most widely-used three-dimensional flow analysis tool for multistage turbomachines. For modern turbomachines,the trend of design is to reach higher aerodynamic loading but with still further compact size. In such a case, the traditional mixing-plane method has to be revised to give a more physically meaningful prediction. In this paper, a novel mixing-plane method was proposed, and three representative test cases including a transonic compressor, a highly-loaded centrifugal compressor and a highpressure axial turbine were performed for validation purpose. This novel mixing-plane method can satisfy the flux conservation perfectly. Reverse flow across the mixing-plane interface can be resolved naturally, thus making this method numerically robust. Artificial reflection at the mixing-plane interface is almost eliminated, and then its detrimental impact on the flow field is minimized. Generally, this mixing-plane method is suitable to simulate steady flows in highly-loaded multistage turbomachines.