Microstructure evolution of 2014 aluminum alloy was studied by hot compression deformation at 410?C to 470?C and strain rates of 0.07 s?1 to 0.53 s?1, to provide manufacturing references for aluminum plate. The deform...Microstructure evolution of 2014 aluminum alloy was studied by hot compression deformation at 410?C to 470?C and strain rates of 0.07 s?1 to 0.53 s?1, to provide manufacturing references for aluminum plate. The deformation temperature and especially strain rate ranges were chosen very close to the actual processing condition. The results show that the stress-strain curves display a stable flow at the given deformation conditions, corresponding a dominant microstructure evolution behavior of dynamic recovery (DRV) and few dynamic recrystallization (DRX). After solution treated at 502?C for 3 hours, quasi in-situ observation shows that static recrystallization (SRX) develop typical fine grains with several microns at grain boundaries, while static recovery (SRV) dominants the microstructure evolution during the soaking time, leading to a similar microstructure to that of the as-deformed. The average low angle grain boundaries (LAGBs) and high angle grain boundaries (HAGBs) display weak differences between as-deformed and solution treated specimens, which reveals a good thermal stability of microstructure for 2014 alloy. However, the deformation at the lower temperature has an obvious trend to induce SRX during solution soaking.展开更多
文摘Microstructure evolution of 2014 aluminum alloy was studied by hot compression deformation at 410?C to 470?C and strain rates of 0.07 s?1 to 0.53 s?1, to provide manufacturing references for aluminum plate. The deformation temperature and especially strain rate ranges were chosen very close to the actual processing condition. The results show that the stress-strain curves display a stable flow at the given deformation conditions, corresponding a dominant microstructure evolution behavior of dynamic recovery (DRV) and few dynamic recrystallization (DRX). After solution treated at 502?C for 3 hours, quasi in-situ observation shows that static recrystallization (SRX) develop typical fine grains with several microns at grain boundaries, while static recovery (SRV) dominants the microstructure evolution during the soaking time, leading to a similar microstructure to that of the as-deformed. The average low angle grain boundaries (LAGBs) and high angle grain boundaries (HAGBs) display weak differences between as-deformed and solution treated specimens, which reveals a good thermal stability of microstructure for 2014 alloy. However, the deformation at the lower temperature has an obvious trend to induce SRX during solution soaking.