With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a pro...With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a promising candidate for efficient greenhouse based building integrated photovoltaic(BIPV)applications.However,the efficiency of BPSCs is still much lower than their theoretical efficiency.In general,interface band alignment is regarded as the vital factor of the BPSCs whereas only few reports on enhancing perovskite film quality.In this work,highly efficient BPSCs were fabricated by improving the crystallization process of CH3NH3PbBr3 with the assistance of anti-solvents.A new anti-solvent of diphenyl ether(DPE)was developed for its strong interaction with the solvents in the perovskite precursor solution.By using the anti-solvent of DPE,trap-state density of the CH3NH3PbBr3 film is reduced and the electron lifetime is enhanced along with the large-grain crystals compared with the samples from conventional anti-solvent of chlorobenzene.Upon preliminary optimization,the efficiencies of typical and semitransparent BPSCs are improved to as high as 9.54%and 7.51%,respectively.Optical absorption measurement demonstrates that the cell without metal electrode shows 80%transparency in the wavelength range of 550-1000 nm that is perfect for greenhouse vegetation.Considering that the cell absorbs light in the blue spectrum before 550 nm,it offers very high solar cell efficiency with only 17.8%of total photons,while over 60%of total photons can transm让through for photosynthesis if a transparent electrode can be obtained such as indium doped SnO2.展开更多
Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells(PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate(TP6)is adopted to passivate surfa...Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells(PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate(TP6)is adopted to passivate surface defects of the perovskite film.It is found that TP6 effectively reduced the surface defects,especially at the grain boundaries where the defects are abundant.Meanwhile,the exposed long alkyl chains and fluorine atoms in the TP6 enhanced the moisture stability of the perovskite film due to its strong hydrophobicity.In addition,the driving force of charge carrier separation and transport is increased by enlarged built-in potential.Consequently,the power conversion efficiency(PCE)of PSCs is significantly improved from 20.59% to 22.41%by increased open-circuit voltage(V_(oc))and fill factor(FF).The unencapsulated device with TP6 treatment exhibits better stability than the control device,and the PCE retains-80%of its initial PCE after 30 days under 15%-25%relative humidity in storage,while the PCE of the control device declines by more than 50%.展开更多
Providing efficient charge transfer through the interface between the semiconductor and co-catalyst is greatly desired in photoelectrocatalytic (PEC) energy conversion.Herein,we excogitate a novel and facile means,via...Providing efficient charge transfer through the interface between the semiconductor and co-catalyst is greatly desired in photoelectrocatalytic (PEC) energy conversion.Herein,we excogitate a novel and facile means,via electrochemical activation,to successfully load the amorphous CoOOH layer architecture onto the surface of TiO_(2).Intriguingly,the as-obtained 6%CoOOH-TiO_(2)photoelectrode manifests optimal PEC performance with a high photocurrent density of 1.3 mA/cm~2,3.5 times higher than that of pristine TiO_(2).Electrochemical impedance spectroscopy (EIS),Tafel analysis and cyclic voltammetry (CV) methods show that the carrier transfer barrier within the electrode and the transition of Co^(3+)OOH to Co^(4+)OOH have the dominating effects on the PEC performance.Theoretical calculation reveals that the interface between the CoOOH and TiO_(2)improves the homogeneity of effective d-orbital electronic-transfer ability among Co sites.This research sheds light on the water oxidation reaction and the design of more favorable PEC cocatalysts.展开更多
Ion migration is a notorious problem in perovskite solar cells(PSCs)that severely mutilates device performance.Herein,a strategy to inhibit ion migration in situ is developed by using photoisomerization of azobenzene(...Ion migration is a notorious problem in perovskite solar cells(PSCs)that severely mutilates device performance.Herein,a strategy to inhibit ion migration in situ is developed by using photoisomerization of azobenzene(AZO)to immobilize cations in the lattice.During the nucleation process,the photoisomerized cis-AZO reacts with FA^(+),MA^(+)and Pb2+cations in the perovskite precursor by synergistic cation-πinteraction and Lewis base coordination,leading to heterogeneous nucleation to produce uniform perovskite film.Meanwhile,it accelerates conversion of intermediate yellowδ-phase to desired black aphase of FAPb I3for improved crystallinity with well-passivated grain surface.Consequently,defect density is effectively reduced for the perovskite film to demonstrate suppressed carrier recombination and enhanced carrier extraction.Subsequently,the solar cell efficiency is elevated from 21.29%to 23.58%with negligible J-V hysteresis.Long-term stability is also improved,with the bare device without any encapsulation retaining 84%of its initial efficiency after aging 744 hours in ambient.展开更多
Achieving high-quality perovskite crystal films is a critical prerequisite in boosting solar cell efficiency and improving the device stability,but the delicate control of nucleation and growth of the perovskite film ...Achieving high-quality perovskite crystal films is a critical prerequisite in boosting solar cell efficiency and improving the device stability,but the delicate control of nucleation and growth of the perovskite film remains limited success.Herein,a facile but effective strategy has been developed to finely tailor the crystallization of thermally stable cesium/formamidinium(Cs/FA)based perovskite via partially replacing PbI2 with PbCl2 in the precursor solution.The incorporation of chlorine into the perovskite crystal lattice derived from PbCl2 changes the crystallization process and improves the crystal quality,which further results in the formation of larger crystal grains compared to the control sample.The larger crystal grains with high crystallinity lead to reduced grain boundaries,suppressed non-radiative recombination,and enhanced photoluminescence lifetime.Under the optimized conditions,the methylammonium free perovskite solar cells(PSCs)delivers a champion power conversion efficiency(PCE)of 21.30%with an open-circuit voltage as high as 1.18 V,which is one of the highest efficiencies for Cs/FA based PSCs up to now.Importantly,the unencapsulated PSC devices retain more than 95%and 81%of their original PCEs even after long-term(over one year)storage under ambient conditions or 2000 h’s thermal aging at 850C in a nitrogen atmosphere,respectively.展开更多
We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinyl...We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2.展开更多
Nickel(Ni)films with positive and negative textured surfaces of lotus and rice leaf patterns were fabricated through an inexpensive and effective method.The as-prepared Ni films were superhydrophobic and exhibited exc...Nickel(Ni)films with positive and negative textured surfaces of lotus and rice leaf patterns were fabricated through an inexpensive and effective method.The as-prepared Ni films were superhydrophobic and exhibited excellent tribological properties after chemical treatment.Experimental results indicated that the water contact angles(WCAs)on the surfaces of biomimetic textured Ni films(approximately 120°)were far greater than those on smooth films(65°).The biomimetic textured surfaces became superhydrophobic(WCA of approximately 150°)after perfluoropolyether(PFPE)treatment,which could be due to the combined effects of the special texture and the PFPE.The as-prepared biomimetic-textured Ni films modified with PFPE were improved with a low friction coefficient and excellent antiwear properties,which were due to the combination of the effective lubrication of PFPE and the special textures that served as a good lubricant and a debris reservoir.Moreover,the antiwear properties of the as-prepared Ni films with negative biomimetic microtextures modified with PFPE were much better than those of films with positive biomimetic microtextures modified with PFPE.展开更多
Effective lubrication under extreme conditions such as high temperature is of considerable importance to ensure the reliability of a mechanical system. New lubricants that can endure high temperatures should be studie...Effective lubrication under extreme conditions such as high temperature is of considerable importance to ensure the reliability of a mechanical system. New lubricants that can endure high temperatures should be studied and employed as alternatives to traditional oil-based lubricant. In this paper, a thermocapillary model of a silicone-oil droplet is developed by solving the Navier–Stokes and energy equations to obtain the flow, pressure, and temperature fields. This is accomplished using a conservative microfluidic two-phase flow level set method designed to track the interface between two immiscible fluids. The numerical simulation accuracy is examined by comparing the numerical results with experimental results obtained for a silicone-oil droplet. Hence, the movement and deformation of molten silicon droplets on graphite and corundum are numerically simulated. The results show that a temperature gradient causes a tension gradient on the droplet surface, which in turn creates a thermocapillary vortex. As the vortex develops, the droplet migrates to the low-temperature zone. In the initial stage, the molten silicon droplet on the corundum substrate forms two opposite vortex cells, whereas two pairs of opposite vortices are formed in the silicone fluid on the graphite substrate. Multiple vortex cells gradually develop into a single vortex cell, and the migration velocity tends to be stable. The greater the basal temperature gradient, the stronger the internal thermocapillary convection of the molten silicon droplet has, which yields higher speeds.展开更多
This paper proposes a new mechanism to explain the performance of thin dye-sensitized solar cells (DSSC). Near-stoichiometric flower-like Cu2ZnSnS4 (CZTS) microspheres with a high specific surface area was fabri- ...This paper proposes a new mechanism to explain the performance of thin dye-sensitized solar cells (DSSC). Near-stoichiometric flower-like Cu2ZnSnS4 (CZTS) microspheres with a high specific surface area was fabri- cated for use as the photocathode in a DSSC. To improve the extraction and transfer of electrons, graphene was added to the CZTS. A DSSC with a 10-gin TiO2 pho- toanode layer exhibited a slightly degraded efficiency with a CZTS-graphene photocathode, relative to a Pt counter electrode (CE). Nevertheless, when the thickness of the TiO2 photoanode was reduced to 2 lam, the efficiency of a DSSC with a CZTS-graphene photocathode was greater than that of a Pt-DSSC. It is speculated that, unlike the Pt CE, a CZTS-graphene photocathode not only collects electrons from an external circuit and catalyzes the reduction of the triiodide ions in the electrolyte, but also utilizes unabsorbed photons to produce photo-excited electrons and suppresses charge recombination, thus enhancing the performance of the cell. The use of narrowband gap p-type semiconductors as photocathodes offers a new means of fabricating thin dye-sensitized solar cells and effectively improving the cell performance.展开更多
Hole transport layers(HTLs)play a significant role in the performance of perovskite solar cells.A new class of linear smallmolecules based on bis(4-methylthio)phenyl)amine as an end group,carbon,oxygen and sulfur as t...Hole transport layers(HTLs)play a significant role in the performance of perovskite solar cells.A new class of linear smallmolecules based on bis(4-methylthio)phenyl)amine as an end group,carbon,oxygen and sulfur as the center atoms for the center unit(denoted as MT-based small-molecule),respectively,have been applied as HTL,and two of them presented the efficiency over 20%in the planar inverted perovskite solar cells(PSCs),which demonstrated a significant improvement in comparison with the widely used HTL,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(known as PEDOT:PSS),in the planar inverted architecture.The ultrafast carrier dynamics show that the excited hot carrier cooling process of MT-based small-molecule HTL samples is faster than that of PEDOT:PSS samples.The kinetic analysis of photo-bleaching peaks of femtosecond transient absorption spectra reveals that the traps at the interface between MT-based small-molecule HTLs and MAPbI3 can be filled much quicker than that at PEDOT/MAPbI3 interfaces.Moreover,the hole injection time from MAPbI3 to MT-based small-molecule HTLs is around 10 times quicker than that to PEDOT:PSS.Such quick trap filling and hole extraction bring a significant enhancement in photovoltaic performances.These findings uncover the carrier transport mechanisms and illuminate a promising approach for the design of new HTLs for highly-efficient perovskite solar cells.展开更多
Organohalogen perovskites are attracting con- siderable attention for use in solar cells. However, the stability of these devices will determine whether they can be made commercially viable. Device encapsulation or th...Organohalogen perovskites are attracting con- siderable attention for use in solar cells. However, the stability of these devices will determine whether they can be made commercially viable. Device encapsulation or the use of a hydrophobic hole-transporting material can pre- vent the permeation of water into the perovskite layer and enhance the humidity stability of the cells under dark conditions. With regard to the light stability of solar cells, recent studies have yielded contradictory results. This work investigated the degradation mechanism of perovskite solar cells under illumination. Further, a simple method was proposed for improving their illumination stability. Amino acids were inserted between the compact TiO2 layer and the perovskite layer to effectively prevent the decomposition of the perovskite layer owing to the superoxide anions and hydroxyl radicals generated under illumination from the H2O and O2 adsorbed onto the TiO2 layer.展开更多
The additive strategy has emerged as an effective approach to improving the performance of perovskite solar cells(PSCs).Herein,a small acceptor-donor-acceptor type molecule indaceno[1,2-b:5,6-b’]dithiophene chloride(...The additive strategy has emerged as an effective approach to improving the performance of perovskite solar cells(PSCs).Herein,a small acceptor-donor-acceptor type molecule indaceno[1,2-b:5,6-b’]dithiophene chloride(IDT-Cl)is designed and synthesized to advance both the efficiency and stability of FA_(0.85)MA_(0.15)PbI_(3)PSCs.Within the IDT-Cl molecule,the S-group with high electron density promotes chemical bonding with the lead cations in the perovskite,resulting in enlarged grain size and smoother surface topography of the perovskite absorber.In addition,the undercoordinated lead ions in the perovskite layer may be passivated by the carbonyl group in the 5-chloroindolin-2-one unit,thereby reducing the number of nonradiative recombination centers.Meanwhile,the IDT-Cl adjusts the energy level mismatch between the perovskite and two adjacent carrier transport layers,leading to easy charge collection.By the multifunctional effect of the IDT-Cl molecule,the modified device yields a high power conversion efficiency(PCE)of 24.46%,8.8%higher than that of the control PSC(22.48%).More importantly,the hydrophobic alkyl side-chain of the IDT-Cl molecule further ensures enhanced humidity stability of the perovskite film and environmental,thermal,and light stabilities of the PSC devices.展开更多
基金supported by the National Key Research Program of China (2016YFA0202403)National Nature Science Foundation of China (61674098)+1 种基金the 111 Project (B1404)Chinese National 1000-Talent-Plan program (Grant No. 111001034)
文摘With ideal combination of benefits that selectively converts high photon energy spectrum into electricity while transmitting low energy photo ns for photos yn thesis,the CH3NH3PbBr3 perovskite solar cell(BPSC)is a promising candidate for efficient greenhouse based building integrated photovoltaic(BIPV)applications.However,the efficiency of BPSCs is still much lower than their theoretical efficiency.In general,interface band alignment is regarded as the vital factor of the BPSCs whereas only few reports on enhancing perovskite film quality.In this work,highly efficient BPSCs were fabricated by improving the crystallization process of CH3NH3PbBr3 with the assistance of anti-solvents.A new anti-solvent of diphenyl ether(DPE)was developed for its strong interaction with the solvents in the perovskite precursor solution.By using the anti-solvent of DPE,trap-state density of the CH3NH3PbBr3 film is reduced and the electron lifetime is enhanced along with the large-grain crystals compared with the samples from conventional anti-solvent of chlorobenzene.Upon preliminary optimization,the efficiencies of typical and semitransparent BPSCs are improved to as high as 9.54%and 7.51%,respectively.Optical absorption measurement demonstrates that the cell without metal electrode shows 80%transparency in the wavelength range of 550-1000 nm that is perfect for greenhouse vegetation.Considering that the cell absorbs light in the blue spectrum before 550 nm,it offers very high solar cell efficiency with only 17.8%of total photons,while over 60%of total photons can transm让through for photosynthesis if a transparent electrode can be obtained such as indium doped SnO2.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA17040506)the National Key Research and Development Program of China (2017YFA0204800/2016YFA0202403)+6 种基金the Key Program project of the National Natural Science Foundation of China (51933010)the National Natural Science Foundation of China (61974085)the 111 Project (B21005)the Changjiang Scholars and Innovative Research Team (IRT_14R33)the National University Research Fund (GK201903051)the Research Start-up Fund from Shaanxi Normal University (1110020142)the Shanxi Science and Technology Department (20201101012).
文摘Interface engineering is an effective way to improve efficiency and long-term stability of perovskite solar cells(PSCs).Herein,an ionic compound tetrabutylammonium hexafluorophosphate(TP6)is adopted to passivate surface defects of the perovskite film.It is found that TP6 effectively reduced the surface defects,especially at the grain boundaries where the defects are abundant.Meanwhile,the exposed long alkyl chains and fluorine atoms in the TP6 enhanced the moisture stability of the perovskite film due to its strong hydrophobicity.In addition,the driving force of charge carrier separation and transport is increased by enlarged built-in potential.Consequently,the power conversion efficiency(PCE)of PSCs is significantly improved from 20.59% to 22.41%by increased open-circuit voltage(V_(oc))and fill factor(FF).The unencapsulated device with TP6 treatment exhibits better stability than the control device,and the PCE retains-80%of its initial PCE after 30 days under 15%-25%relative humidity in storage,while the PCE of the control device declines by more than 50%.
基金support from the National Key Research Program of China (2017YFA0204800, 2016YFA0202403)the Natural Science Foundation of China (No. 21603136)+3 种基金the Changjiang Scholar and Innovative Research Team (IRT_14R33)the Fundamental Research Funds for the Central Universities (GK202003042)The 111 Project (B14041)the Chinese National 1000-Talent-Plan program are also acknowledged。
文摘Providing efficient charge transfer through the interface between the semiconductor and co-catalyst is greatly desired in photoelectrocatalytic (PEC) energy conversion.Herein,we excogitate a novel and facile means,via electrochemical activation,to successfully load the amorphous CoOOH layer architecture onto the surface of TiO_(2).Intriguingly,the as-obtained 6%CoOOH-TiO_(2)photoelectrode manifests optimal PEC performance with a high photocurrent density of 1.3 mA/cm~2,3.5 times higher than that of pristine TiO_(2).Electrochemical impedance spectroscopy (EIS),Tafel analysis and cyclic voltammetry (CV) methods show that the carrier transfer barrier within the electrode and the transition of Co^(3+)OOH to Co^(4+)OOH have the dominating effects on the PEC performance.Theoretical calculation reveals that the interface between the CoOOH and TiO_(2)improves the homogeneity of effective d-orbital electronic-transfer ability among Co sites.This research sheds light on the water oxidation reaction and the design of more favorable PEC cocatalysts.
基金supported by the National Natural Science Foundation of China(21603140)the 111 Project(B21005)。
文摘Ion migration is a notorious problem in perovskite solar cells(PSCs)that severely mutilates device performance.Herein,a strategy to inhibit ion migration in situ is developed by using photoisomerization of azobenzene(AZO)to immobilize cations in the lattice.During the nucleation process,the photoisomerized cis-AZO reacts with FA^(+),MA^(+)and Pb2+cations in the perovskite precursor by synergistic cation-πinteraction and Lewis base coordination,leading to heterogeneous nucleation to produce uniform perovskite film.Meanwhile,it accelerates conversion of intermediate yellowδ-phase to desired black aphase of FAPb I3for improved crystallinity with well-passivated grain surface.Consequently,defect density is effectively reduced for the perovskite film to demonstrate suppressed carrier recombination and enhanced carrier extraction.Subsequently,the solar cell efficiency is elevated from 21.29%to 23.58%with negligible J-V hysteresis.Long-term stability is also improved,with the bare device without any encapsulation retaining 84%of its initial efficiency after aging 744 hours in ambient.
基金support from the National Natural Science Foundation of China(Grant Nos.21773218 and 61904166)。
文摘Achieving high-quality perovskite crystal films is a critical prerequisite in boosting solar cell efficiency and improving the device stability,but the delicate control of nucleation and growth of the perovskite film remains limited success.Herein,a facile but effective strategy has been developed to finely tailor the crystallization of thermally stable cesium/formamidinium(Cs/FA)based perovskite via partially replacing PbI2 with PbCl2 in the precursor solution.The incorporation of chlorine into the perovskite crystal lattice derived from PbCl2 changes the crystallization process and improves the crystal quality,which further results in the formation of larger crystal grains compared to the control sample.The larger crystal grains with high crystallinity lead to reduced grain boundaries,suppressed non-radiative recombination,and enhanced photoluminescence lifetime.Under the optimized conditions,the methylammonium free perovskite solar cells(PSCs)delivers a champion power conversion efficiency(PCE)of 21.30%with an open-circuit voltage as high as 1.18 V,which is one of the highest efficiencies for Cs/FA based PSCs up to now.Importantly,the unencapsulated PSC devices retain more than 95%and 81%of their original PCEs even after long-term(over one year)storage under ambient conditions or 2000 h’s thermal aging at 850C in a nitrogen atmosphere,respectively.
基金supported by the National Natural Science Foundation of China (51272033, 51572037, 51603021)333 Project of Jiangsu Province (BRA2017353)the Priority Academic Program Development of Jiangsu Higher Education Institutions and Anhui Provincial Natural Science Foundation (1608085QF156)
文摘We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2.
基金The authors appreciate the National Natural Science Foundation of China(Nos.51102028 and 51335002)acknowledge the financial support of the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Nickel(Ni)films with positive and negative textured surfaces of lotus and rice leaf patterns were fabricated through an inexpensive and effective method.The as-prepared Ni films were superhydrophobic and exhibited excellent tribological properties after chemical treatment.Experimental results indicated that the water contact angles(WCAs)on the surfaces of biomimetic textured Ni films(approximately 120°)were far greater than those on smooth films(65°).The biomimetic textured surfaces became superhydrophobic(WCA of approximately 150°)after perfluoropolyether(PFPE)treatment,which could be due to the combined effects of the special texture and the PFPE.The as-prepared biomimetic-textured Ni films modified with PFPE were improved with a low friction coefficient and excellent antiwear properties,which were due to the combination of the effective lubrication of PFPE and the special textures that served as a good lubricant and a debris reservoir.Moreover,the antiwear properties of the as-prepared Ni films with negative biomimetic microtextures modified with PFPE were much better than those of films with positive biomimetic microtextures modified with PFPE.
基金support from the Key Program of the National Natural Science Foundation of China(Grant No.51335002)support projects of strategic emerging industries in Jiangsu Province(Grant No.2015-318)
文摘Effective lubrication under extreme conditions such as high temperature is of considerable importance to ensure the reliability of a mechanical system. New lubricants that can endure high temperatures should be studied and employed as alternatives to traditional oil-based lubricant. In this paper, a thermocapillary model of a silicone-oil droplet is developed by solving the Navier–Stokes and energy equations to obtain the flow, pressure, and temperature fields. This is accomplished using a conservative microfluidic two-phase flow level set method designed to track the interface between two immiscible fluids. The numerical simulation accuracy is examined by comparing the numerical results with experimental results obtained for a silicone-oil droplet. Hence, the movement and deformation of molten silicon droplets on graphite and corundum are numerically simulated. The results show that a temperature gradient causes a tension gradient on the droplet surface, which in turn creates a thermocapillary vortex. As the vortex develops, the droplet migrates to the low-temperature zone. In the initial stage, the molten silicon droplet on the corundum substrate forms two opposite vortex cells, whereas two pairs of opposite vortices are formed in the silicone fluid on the graphite substrate. Multiple vortex cells gradually develop into a single vortex cell, and the migration velocity tends to be stable. The greater the basal temperature gradient, the stronger the internal thermocapillary convection of the molten silicon droplet has, which yields higher speeds.
基金This work was supported by the National Natural Science Foundation of China (51272033, 51572037 and 51335002), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (14KJA430001).
文摘This paper proposes a new mechanism to explain the performance of thin dye-sensitized solar cells (DSSC). Near-stoichiometric flower-like Cu2ZnSnS4 (CZTS) microspheres with a high specific surface area was fabri- cated for use as the photocathode in a DSSC. To improve the extraction and transfer of electrons, graphene was added to the CZTS. A DSSC with a 10-gin TiO2 pho- toanode layer exhibited a slightly degraded efficiency with a CZTS-graphene photocathode, relative to a Pt counter electrode (CE). Nevertheless, when the thickness of the TiO2 photoanode was reduced to 2 lam, the efficiency of a DSSC with a CZTS-graphene photocathode was greater than that of a Pt-DSSC. It is speculated that, unlike the Pt CE, a CZTS-graphene photocathode not only collects electrons from an external circuit and catalyzes the reduction of the triiodide ions in the electrolyte, but also utilizes unabsorbed photons to produce photo-excited electrons and suppresses charge recombination, thus enhancing the performance of the cell. The use of narrowband gap p-type semiconductors as photocathodes offers a new means of fabricating thin dye-sensitized solar cells and effectively improving the cell performance.
基金supported by the National Key Research and Development Program of China(2017YFB037001)the National Natural Science Foundation of China(91648109、51603021、51602031、51673139)+2 种基金Jiangsu Provincial“333”High-level Talent Training Projectthe Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Applied Basic Research Program of Changzhou(CJ20190050)。
文摘Hole transport layers(HTLs)play a significant role in the performance of perovskite solar cells.A new class of linear smallmolecules based on bis(4-methylthio)phenyl)amine as an end group,carbon,oxygen and sulfur as the center atoms for the center unit(denoted as MT-based small-molecule),respectively,have been applied as HTL,and two of them presented the efficiency over 20%in the planar inverted perovskite solar cells(PSCs),which demonstrated a significant improvement in comparison with the widely used HTL,poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(known as PEDOT:PSS),in the planar inverted architecture.The ultrafast carrier dynamics show that the excited hot carrier cooling process of MT-based small-molecule HTL samples is faster than that of PEDOT:PSS samples.The kinetic analysis of photo-bleaching peaks of femtosecond transient absorption spectra reveals that the traps at the interface between MT-based small-molecule HTLs and MAPbI3 can be filled much quicker than that at PEDOT/MAPbI3 interfaces.Moreover,the hole injection time from MAPbI3 to MT-based small-molecule HTLs is around 10 times quicker than that to PEDOT:PSS.Such quick trap filling and hole extraction bring a significant enhancement in photovoltaic performances.These findings uncover the carrier transport mechanisms and illuminate a promising approach for the design of new HTLs for highly-efficient perovskite solar cells.
文摘Organohalogen perovskites are attracting con- siderable attention for use in solar cells. However, the stability of these devices will determine whether they can be made commercially viable. Device encapsulation or the use of a hydrophobic hole-transporting material can pre- vent the permeation of water into the perovskite layer and enhance the humidity stability of the cells under dark conditions. With regard to the light stability of solar cells, recent studies have yielded contradictory results. This work investigated the degradation mechanism of perovskite solar cells under illumination. Further, a simple method was proposed for improving their illumination stability. Amino acids were inserted between the compact TiO2 layer and the perovskite layer to effectively prevent the decomposition of the perovskite layer owing to the superoxide anions and hydroxyl radicals generated under illumination from the H2O and O2 adsorbed onto the TiO2 layer.
基金supported by the National Natural Science Foundation of China(62174103,62274104)the Fundamental Research Funds for the Central Universities(GK202103052)+2 种基金the Changjiang Scholar and the Innovative Research Team(IRT_14R33)the 111 Project(B21005)the Chinese National 1000-Talent-Plan Program(111001034)。
文摘The additive strategy has emerged as an effective approach to improving the performance of perovskite solar cells(PSCs).Herein,a small acceptor-donor-acceptor type molecule indaceno[1,2-b:5,6-b’]dithiophene chloride(IDT-Cl)is designed and synthesized to advance both the efficiency and stability of FA_(0.85)MA_(0.15)PbI_(3)PSCs.Within the IDT-Cl molecule,the S-group with high electron density promotes chemical bonding with the lead cations in the perovskite,resulting in enlarged grain size and smoother surface topography of the perovskite absorber.In addition,the undercoordinated lead ions in the perovskite layer may be passivated by the carbonyl group in the 5-chloroindolin-2-one unit,thereby reducing the number of nonradiative recombination centers.Meanwhile,the IDT-Cl adjusts the energy level mismatch between the perovskite and two adjacent carrier transport layers,leading to easy charge collection.By the multifunctional effect of the IDT-Cl molecule,the modified device yields a high power conversion efficiency(PCE)of 24.46%,8.8%higher than that of the control PSC(22.48%).More importantly,the hydrophobic alkyl side-chain of the IDT-Cl molecule further ensures enhanced humidity stability of the perovskite film and environmental,thermal,and light stabilities of the PSC devices.