Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In suc...Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.展开更多
Objective: To evaluate the diagnostic and prognostic values in patients with delayed encephalopathy after acute carbon monoxide poisoning. Methods: The tibial nerve somatosensory evoked potentials (SEPs), vision e...Objective: To evaluate the diagnostic and prognostic values in patients with delayed encephalopathy after acute carbon monoxide poisoning. Methods: The tibial nerve somatosensory evoked potentials (SEPs), vision evoked potentials (VEPs), and brain stem audition evoked potentials(BAEPs) were performed in 32 healthy adults and 43 patients with delayed encephalopathy after acute carbon monoxide poisoning. Results: This paper indicated abnormalities of tibial nerve SEPs in 31 patients (31/43, 72.1%), VEPs in 17 patients (17/28, 60.7%), and BAEPs in 14, patients (14/43, 32.6%). These results showed that the greatest diagnostic value was SEPs, followed by VEPs and, BAEPs with the lowest sensitivity. Conclusion: Multimodality evoked potentials (EPs) can be used for evaluating the diagnostic and prognostic values in cases of delayed encephalopathy after acute carbon monoxide poisoning.展开更多
The genetic information coded in DNA leads to trait innovation via a gene regulatory network(GRN)in development.Here,we developed a conserved non-coding element interpretation method to integrate multi-omics data into...The genetic information coded in DNA leads to trait innovation via a gene regulatory network(GRN)in development.Here,we developed a conserved non-coding element interpretation method to integrate multi-omics data into gene regulatory network(CNEReg)to investigate the ruminant multi-chambered stomach innovation.We generated paired expression and chromatin accessibility data during rumen and esophagus development in sheep,and revealed 1601 active ruminantspecific conserved non-coding elements(active-RSCNEs).To interpret the function of these activeRSCNEs,we defined toolkit transcription factors(TTFs)and modeled their regulation on rumenspecific genes via batteries of active-RSCNEs during development.Our developmental GRN revealed 18 TTFs and 313 active-RSCNEs regulating 7 rumen functional modules.Notably,6 TTFs(OTX1,SOX21,HOXC8,SOX2,TP63,and PPARG),as well as 16 active-RSCNEs,functionally distinguished the rumen from the esophagus.Our study provides a systematic approach to understanding how gene regulation evolves and shapes complex traits by putting evo-devo concepts into practice with developmental multi-omics data.展开更多
The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers.We analyzed 897 transcriptomes from three Cetartiodactyla lineages:rumi...The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers.We analyzed 897 transcriptomes from three Cetartiodactyla lineages:ruminants,camels and cetaceans,as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations.We identified genes with relatively high expression in the rumen,of which many appeared to be recruited from other tissues.These genes show functional enrichment in ketone body metabolism,regulation of microbial community,and epithelium absorption,which are the most prominent biological processes involved in rumen innovations.Several modes of genetic change underlying rumen functional innovations were uncovered,including coding mutations,genes newly evolved,and changes of regulatory elements.We validated that the key ketogenesis rate-limiting gene(HMGCS2)with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals.Two newly evolved genes(LYZ1 and DEFB1)are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium.Furthermore,we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment.These results greatly improve our understanding of rumen evolution and organ evo-devo in general.展开更多
基金supported by Key Research and Development Project of Shandong Province[2019GSF109084]Young Scholars Program of Shandong University[2018WLJH73].
文摘Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84.
基金The Department of Education in Henan (2000320042)
文摘Objective: To evaluate the diagnostic and prognostic values in patients with delayed encephalopathy after acute carbon monoxide poisoning. Methods: The tibial nerve somatosensory evoked potentials (SEPs), vision evoked potentials (VEPs), and brain stem audition evoked potentials(BAEPs) were performed in 32 healthy adults and 43 patients with delayed encephalopathy after acute carbon monoxide poisoning. Results: This paper indicated abnormalities of tibial nerve SEPs in 31 patients (31/43, 72.1%), VEPs in 17 patients (17/28, 60.7%), and BAEPs in 14, patients (14/43, 32.6%). These results showed that the greatest diagnostic value was SEPs, followed by VEPs and, BAEPs with the lowest sensitivity. Conclusion: Multimodality evoked potentials (EPs) can be used for evaluating the diagnostic and prognostic values in cases of delayed encephalopathy after acute carbon monoxide poisoning.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0712402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDPB17)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-077)the National Natural Science Foundation of China(Grant Nos.12025107,11871463,11688101,and 61621003)the National Thousand Youth Talents Plan,and the CAS“Light of West China”Program(Grant No.xbzg-zdsys-201913)China.We thank High Performance Computing(HPC)of Northwest A&F University(NWAFU)for providing computing resources。
文摘The genetic information coded in DNA leads to trait innovation via a gene regulatory network(GRN)in development.Here,we developed a conserved non-coding element interpretation method to integrate multi-omics data into gene regulatory network(CNEReg)to investigate the ruminant multi-chambered stomach innovation.We generated paired expression and chromatin accessibility data during rumen and esophagus development in sheep,and revealed 1601 active ruminantspecific conserved non-coding elements(active-RSCNEs).To interpret the function of these activeRSCNEs,we defined toolkit transcription factors(TTFs)and modeled their regulation on rumenspecific genes via batteries of active-RSCNEs during development.Our developmental GRN revealed 18 TTFs and 313 active-RSCNEs regulating 7 rumen functional modules.Notably,6 TTFs(OTX1,SOX21,HOXC8,SOX2,TP63,and PPARG),as well as 16 active-RSCNEs,functionally distinguished the rumen from the esophagus.Our study provides a systematic approach to understanding how gene regulation evolves and shapes complex traits by putting evo-devo concepts into practice with developmental multi-omics data.
基金supported by the National Natural Science Foundation of China(31822052,31572381)the National Thousand Youth Talents Plan to Y.J.+3 种基金National Natural Science Foundation of China(31660644)to S.H.National Natural Science Foundation of China(41422604)to S.L.The Villum Foundation(VKR 023447)the Independent Research Fund Denmark(8049-00098B)。
文摘The rumen is the hallmark organ of ruminants and hosts a diverse ecosystem of microorganisms that facilitates efficient digestion of plant fibers.We analyzed 897 transcriptomes from three Cetartiodactyla lineages:ruminants,camels and cetaceans,as well as data from ruminant comparative genomics and functional assays to explore the genetic basis of rumen functional innovations.We identified genes with relatively high expression in the rumen,of which many appeared to be recruited from other tissues.These genes show functional enrichment in ketone body metabolism,regulation of microbial community,and epithelium absorption,which are the most prominent biological processes involved in rumen innovations.Several modes of genetic change underlying rumen functional innovations were uncovered,including coding mutations,genes newly evolved,and changes of regulatory elements.We validated that the key ketogenesis rate-limiting gene(HMGCS2)with five ruminant-specific mutations was under positive selection and exhibits higher synthesis activity than those of other mammals.Two newly evolved genes(LYZ1 and DEFB1)are resistant to Gram-positive bacteria and thereby may regulate microbial community equilibrium.Furthermore,we confirmed that the changes of regulatory elements accounted for the majority of rumen gene recruitment.These results greatly improve our understanding of rumen evolution and organ evo-devo in general.