The Cosic Resonance Recognition Model (RRM) for amino acid sequences was applied to the classes of proteins displayed by four strains (Sudan, Zaire, Reston, Ivory Coast) of Ebola virus that produced either high or min...The Cosic Resonance Recognition Model (RRM) for amino acid sequences was applied to the classes of proteins displayed by four strains (Sudan, Zaire, Reston, Ivory Coast) of Ebola virus that produced either high or minimal numbers of human fatalities. The results clearly differentiated highly lethal and non-lethal strains. Solutions for the two lethal strains exhibited near ultraviolet (~230 nm) photon values while the two asymptomatic forms displayed near infrared (~1000 nm) values. Cross-correlations of spectral densities of the RRM values of the different classes of proteins associated with the genome of the viruses supported this dichotomy. The strongest coefficient occurred only between Sudan-Zaire strains but not for any of the other pairs of strains for sGP, the small glycoprotein that intercalated with the plasma cell membrane to promote insertion of viral contents into cellular space. A surprising, statistically significant cross-spectral correlation occurred between the “spike” glycoprotein component (GP1) of the virus that associated the anchoring of the virus to the mammalian cell plasma membrane and the Schumann resonance of the earth whose intensities were determined by the incidence of equatorial thunderstorms. Previous applications of the RRM to shifting photon wavelengths emitted by melanoma cells adapting to reduced ambient temperature have validated Cosic’s model and have demonstrated very narrowwave-length (about 10 nm) specificity. One possible ancillary and non-invasive treatment of people within which the fatal Ebola strains are residing would be whole body application of narrow band near-infrared light pulsed as specific physiologically-patterned sequences with sufficient radiant flux density to perfuse the entire body volume.展开更多
Purpose: Exposure to a particular pattern of weak (~3 to 5 μT) magnetic fields produced by computer-generated point durations within three-dimensions completely dissolved malignant cancer cells but not healthy cells....Purpose: Exposure to a particular pattern of weak (~3 to 5 μT) magnetic fields produced by computer-generated point durations within three-dimensions completely dissolved malignant cancer cells but not healthy cells. Biomolecular analyses and confocal microscopy indicated excessive expansion followed by contraction contributed to the “explosion” of the cell. However, after months of replicable effects, the phenomenon slowly ceased. Considering the potency of the complete dissolution of cancer cell lines after 5 days of 6.5-hour daily exposures and the implications for human treatment, the potential source of the disappearance of the effect was pursued by summarizing all of the 50 experiments and assessing the likely etiologies. Materials and Methods: B16-BL6, MDAMB 231 and MCF7 malignant cells and HSG, a non-malignant cell line, were exposed to a sham-field condition or to a specific pattern of computer-generated magnetic fields produced from converting different voltages, each with point durations of 3 ms to 3-D magnetic fields. Conclusion: The specific serial presentation of the two field patterns (one frequency modulated;the other amplitude and frequency modulated) completely dissolved malignant cells but not normal cells within a “zone” within the exposure volume at the conjunction of the three planes of the applied magnetic fields. The affected cells underwent massive melanin production, expansion, contraction and “beading” of submembrane actin structures before fragmentation within this zone. However, this powerful all-or-none phenomenon may have been disrupted by moving the cells, excess mechanical agitation during exposure, or non-optimal point durations of the field parameters. Indirect effects from communication signals (WIFI) through line currents that operated the incubators could not be excluded.展开更多
In multiple experiments plates of melanoma cells separated by either 3 m or 1.7 km were placed in the centers of toroids. A specific protocol of changing, angular velocity, pulsed magnetic fields that has been shown t...In multiple experiments plates of melanoma cells separated by either 3 m or 1.7 km were placed in the centers of toroids. A specific protocol of changing, angular velocity, pulsed magnetic fields that has been shown to produce excess correlation in photon durations and shift in proton concentrations (pH) in spring water were generated around both plates of cells. Serial injections of 50 μL of standard concentrations of hydrogen peroxide into the “local” plates of cells during the 12 min of field activation produced conspicuous cell death (reduction of viable cells by about 50%) with comparable diminishments of cell numbers in the non-local plates of cells within 24 hr but only if both loci separated by either 3 m or 1.7 km had shared the “excess correlation” magnetic field sequence. The non-local effect did not occur if the magnetic fields had not been present. Higher or lower concentrations of peroxide or concentrations that eliminated all of the cells or very few cells in the local dishes were associated with no significant diminishment of non-local cell growth. The data indicate that there must be a critical number of cells remaining viable following the local chemical reaction for the excess correlation to be manifested in the non-local cells. We suggest that this specific spatial-temporal pattern of fields generated within the paired toroidal geometries promotes transposition of virtual chemical reactions as an information field. Calculations of the energy available per cell and per volume of the quantity of reactants injected into the local space from the intensity of the changing velocity toroidal magnetic field support previous measurements and derivations that the units of information transposition may involve discrete quantities that represent equivalents of photons, electrons and protons.展开更多
文摘The Cosic Resonance Recognition Model (RRM) for amino acid sequences was applied to the classes of proteins displayed by four strains (Sudan, Zaire, Reston, Ivory Coast) of Ebola virus that produced either high or minimal numbers of human fatalities. The results clearly differentiated highly lethal and non-lethal strains. Solutions for the two lethal strains exhibited near ultraviolet (~230 nm) photon values while the two asymptomatic forms displayed near infrared (~1000 nm) values. Cross-correlations of spectral densities of the RRM values of the different classes of proteins associated with the genome of the viruses supported this dichotomy. The strongest coefficient occurred only between Sudan-Zaire strains but not for any of the other pairs of strains for sGP, the small glycoprotein that intercalated with the plasma cell membrane to promote insertion of viral contents into cellular space. A surprising, statistically significant cross-spectral correlation occurred between the “spike” glycoprotein component (GP1) of the virus that associated the anchoring of the virus to the mammalian cell plasma membrane and the Schumann resonance of the earth whose intensities were determined by the incidence of equatorial thunderstorms. Previous applications of the RRM to shifting photon wavelengths emitted by melanoma cells adapting to reduced ambient temperature have validated Cosic’s model and have demonstrated very narrowwave-length (about 10 nm) specificity. One possible ancillary and non-invasive treatment of people within which the fatal Ebola strains are residing would be whole body application of narrow band near-infrared light pulsed as specific physiologically-patterned sequences with sufficient radiant flux density to perfuse the entire body volume.
文摘Purpose: Exposure to a particular pattern of weak (~3 to 5 μT) magnetic fields produced by computer-generated point durations within three-dimensions completely dissolved malignant cancer cells but not healthy cells. Biomolecular analyses and confocal microscopy indicated excessive expansion followed by contraction contributed to the “explosion” of the cell. However, after months of replicable effects, the phenomenon slowly ceased. Considering the potency of the complete dissolution of cancer cell lines after 5 days of 6.5-hour daily exposures and the implications for human treatment, the potential source of the disappearance of the effect was pursued by summarizing all of the 50 experiments and assessing the likely etiologies. Materials and Methods: B16-BL6, MDAMB 231 and MCF7 malignant cells and HSG, a non-malignant cell line, were exposed to a sham-field condition or to a specific pattern of computer-generated magnetic fields produced from converting different voltages, each with point durations of 3 ms to 3-D magnetic fields. Conclusion: The specific serial presentation of the two field patterns (one frequency modulated;the other amplitude and frequency modulated) completely dissolved malignant cells but not normal cells within a “zone” within the exposure volume at the conjunction of the three planes of the applied magnetic fields. The affected cells underwent massive melanin production, expansion, contraction and “beading” of submembrane actin structures before fragmentation within this zone. However, this powerful all-or-none phenomenon may have been disrupted by moving the cells, excess mechanical agitation during exposure, or non-optimal point durations of the field parameters. Indirect effects from communication signals (WIFI) through line currents that operated the incubators could not be excluded.
文摘In multiple experiments plates of melanoma cells separated by either 3 m or 1.7 km were placed in the centers of toroids. A specific protocol of changing, angular velocity, pulsed magnetic fields that has been shown to produce excess correlation in photon durations and shift in proton concentrations (pH) in spring water were generated around both plates of cells. Serial injections of 50 μL of standard concentrations of hydrogen peroxide into the “local” plates of cells during the 12 min of field activation produced conspicuous cell death (reduction of viable cells by about 50%) with comparable diminishments of cell numbers in the non-local plates of cells within 24 hr but only if both loci separated by either 3 m or 1.7 km had shared the “excess correlation” magnetic field sequence. The non-local effect did not occur if the magnetic fields had not been present. Higher or lower concentrations of peroxide or concentrations that eliminated all of the cells or very few cells in the local dishes were associated with no significant diminishment of non-local cell growth. The data indicate that there must be a critical number of cells remaining viable following the local chemical reaction for the excess correlation to be manifested in the non-local cells. We suggest that this specific spatial-temporal pattern of fields generated within the paired toroidal geometries promotes transposition of virtual chemical reactions as an information field. Calculations of the energy available per cell and per volume of the quantity of reactants injected into the local space from the intensity of the changing velocity toroidal magnetic field support previous measurements and derivations that the units of information transposition may involve discrete quantities that represent equivalents of photons, electrons and protons.