期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of flow-field in a dual mode ramjet combustor with boundary layer bleed in isolator 被引量:1
1
作者 nishanth thillai Amit Thakur +1 位作者 Srikrishnateja K. Dharani J. 《Propulsion and Power Research》 SCIE 2021年第1期37-47,共11页
A two-dimensional Reynolds averaged Navier Stokes(RANS)simulation of a dual mode ramjet(DMRJ)combustor is performed,modeling the University of Michigan dual-mode combustor experimental setup operating in reacting mode... A two-dimensional Reynolds averaged Navier Stokes(RANS)simulation of a dual mode ramjet(DMRJ)combustor is performed,modeling the University of Michigan dual-mode combustor experimental setup operating in reacting mode with different equivalence ratios(4).The simulations are carried out using a k-u SST turbulence model and a steady diffusion flamelet model for non-premixed combustion.Air enters the isolator at Mach 2.2,stagnation pressure and temperature of 549.2 kPa and 1400 K respectively.Hydrogen is injected transverse to the flow direction and upstream of the cavity flame holder to simulate ramjet(4 Z 0.29)and scramjet(4 Z 0.19)modes of operation.Wall static pressure plots are used to validate numerical results against experimental data.Analysis of flow separation in ramjet mode due to the presence of a shock train in the isolator is carried out by means of numerical Schlieren images overlapped with contours of negative axial velocity,showing the effects of shock wave boundary layer interaction(SWBLI).Active control through wall normal boundary layer bleed in the separated flow region is implemented,which weakens the shock train and moves it downstream closer to the cavity.Bleed results in an improved stagnation pressure recovery in ramjet mode,with a marginal increase in combustion efficiency. 展开更多
关键词 Dual mode ramjet Scramjet combustor Shock wave boundary layer interaction Boundary-layer bleed Flamelet combustion model
原文传递
Combustion enhancement in rearward step based scramjet combustor by air injection at step base
2
作者 Amit Thakur nishanth thillai Amritesh Sinha 《Propulsion and Power Research》 SCIE 2021年第3期224-234,共11页
Numerical simulations were performed to model the non-reacting and reacting flow behind a rearward step flameholder in Mach 1.6 supersonic flow with fuel injection at the step base.The combustor geometry was based on ... Numerical simulations were performed to model the non-reacting and reacting flow behind a rearward step flameholder in Mach 1.6 supersonic flow with fuel injection at the step base.The combustor geometry was based on the University of Florida scramjet experimental facility.Turbulence was modeled using k-u shear stress transport(SST),laminar flamelet was used for combustion modeling.Wall static pressure showed good agreement with experimental data for non-reacting and reacting flow.For non-reacting flow,dummy fuel helium mole fraction distribution in the recirculation region behind the step was validated with planar laser induced fluorescence(PLIF)images in experiments.To improve the combustion characteristics,air was injected in tandem with hydrogen at step base using various configurations.With all fuel injection as baseline,the case with 2 air jets around each fuel jet and air injected at 2 times the stagnation pressure of fuel showed the most improvement compared to other cases.It was most effective in reducing the local fuel richness,shortening the flame length and increasing combustion efficiency. 展开更多
关键词 Step flameholder Scramjet combustor Local equivalence ratio Air injection Combustion efficiency
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部