期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Utilization of Nanomaterials as Anode Modifiers for Improving Microbial Fuel Cells Performance 被引量:1
1
作者 nishit savla Raksha Anand +1 位作者 Soumya Pandit Ram Prasad 《Journal of Renewable Materials》 SCIE EI 2020年第12期1581-1605,共25页
Microbial fuel cells(MFCs)are an attractive innovation at the nexus of energy and water security for the future.MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bio... Microbial fuel cells(MFCs)are an attractive innovation at the nexus of energy and water security for the future.MFC utilizes electrochemically active microorganisms to oxidize biodegradable substrates and generate bioelectricity in a single step.The material of the anode plays a vital role in increasing the MFC’s power output.The anode in MFC can be upgraded using nanomaterials providing benefits of exceptional physicochemical properties.The nanomaterials in anode gives a high surface area,improved electron transfer promotes electroactive biofilm.Enhanced power output in terms of Direct current(DC)can be obtained as the consequence of improved microbe-electrode interaction.However,several limitations like complex synthesis and degeneration of property do exist in the development of nanomaterial-based anode.The present review discusses different renewable nanomaterial applied in the anode to recover bioelectricity in MFC.Carbon nanomaterials have emerged in the past decade as promising materials for anode construction.Composite materials have also demonstrated the capacity to become potential anode materials of choice.Application of a few transition metal oxides have been explored for efficient extracellular electron transport(EET)from microbes to the anode. 展开更多
关键词 Microbial fuel cell(MFC) anodic modifications CAPACITANCE carbon nanotubes graphene porous carbons metallic nanomaterials power density coulombic efficiency
下载PDF
A Comprehensive Review on Oxygen Reduction Reaction in Microbial Fuel Cells 被引量:1
2
作者 Pooja Dange nishit savla +5 位作者 Soumya Pandit Rambabu Bobba Sokhee P.Jung Piyush Kumar Gupta Mohit Sahni Ram Prasad 《Journal of Renewable Materials》 SCIE EI 2022年第3期665-697,共33页
The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved ... The focus of microbial fuel cell research in recent years has been on the development of materials,microbes,and transfer of charges in the system,resulting in a substantial improvement in current density and improved power generation.The cathode is generally recognized as the limiting factor due to its high-distance proton transfer,slow oxygen reduction reaction(ORR),and expensive materials.The heterogeneous reaction determines power gen-eration in MFC.This comprehensive review describes-recent advancements in the development of cathode mate-rials and catalysts associated with ORR.The recent studies indicated the utilization of different metal oxides,the ferrite-based catalyst to overcome this bottleneck.These studies conclude that some cathode materials,in parti-cular,graphene-based conductive polymer composites with non-precious metal catalysts provide substantial ben-efits for sustainable development in the field of MFCs.Furthermore,it also highlights the potentiality to replace the conventional platinum air cathode for the large-scale production of the next generation of MFCs.It was evi-dent from the experiments that cathode catalyst needs to be blended with conductive carbon materials to make cathode conductive and efficient for ORR.This review discusses various antifouling strategies for cathode biofoul-ing and its effect on the MFC performance.Moreover,it also depicts cost estimations of various catalysts essential for further scale-up of MFC technology. 展开更多
关键词 CATHODE catalyst microbial fuel cell(MFC) NANOMATERIALS oxygen reduction reaction(ORR) BIOFOULING BIOCATHODE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部