With the fast development of nanoscience and nanotechnology,the nanomaterials have attracted multidisciplinary interests.The high specific surface area and large numbers of oxygen-containing functional groups of graph...With the fast development of nanoscience and nanotechnology,the nanomaterials have attracted multidisciplinary interests.The high specific surface area and large numbers of oxygen-containing functional groups of graphene oxides(GOs) make them suitable in the preconcentration and solidification of radionuclides from wastewater.In this paper,mainly based on the recent work carried out in our laboratory,the efficient elimination of radionuclides using GOs and GO-based nanomaterials as adsorbents are summarized and the interaction mechanisms are discussed from the results of batch techniques,surface complexation modeling,spectroscopic analysis and theoretical calculations.This review is helpful for the understanding of the interactions of radionuclides with GOs and GO-based nanomaterials,which is also crucial for the application of GOs and GO-based nanomaterials in environmental radionuclide pollution management and also helpful in nuclear waste management.展开更多
基金supported by the National Natural Science Foundation of China (21225730,91326202,and 21577032)the Fundamental Research Funds for the Central Universities (JB2015001)Furong Scholarship of Hunan Province
文摘With the fast development of nanoscience and nanotechnology,the nanomaterials have attracted multidisciplinary interests.The high specific surface area and large numbers of oxygen-containing functional groups of graphene oxides(GOs) make them suitable in the preconcentration and solidification of radionuclides from wastewater.In this paper,mainly based on the recent work carried out in our laboratory,the efficient elimination of radionuclides using GOs and GO-based nanomaterials as adsorbents are summarized and the interaction mechanisms are discussed from the results of batch techniques,surface complexation modeling,spectroscopic analysis and theoretical calculations.This review is helpful for the understanding of the interactions of radionuclides with GOs and GO-based nanomaterials,which is also crucial for the application of GOs and GO-based nanomaterials in environmental radionuclide pollution management and also helpful in nuclear waste management.