期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced Tunicate Swarm Optimization with Transfer Learning Enabled Medical Image Analysis System
1
作者 nojood o aljehane 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期3109-3126,共18页
Medical image analysis is an active research topic,with thousands of studies published in the past few years.Transfer learning(TL)including convolutional neural networks(CNNs)focused to enhance efficiency on an innova... Medical image analysis is an active research topic,with thousands of studies published in the past few years.Transfer learning(TL)including convolutional neural networks(CNNs)focused to enhance efficiency on an innovative task using the knowledge of the same tasks learnt in advance.It has played a major role in medical image analysis since it solves the data scarcity issue along with that it saves hardware resources and time.This study develops an EnhancedTunicate SwarmOptimization withTransfer Learning EnabledMedical Image Analysis System(ETSOTL-MIAS).The goal of the ETSOTL-MIAS technique lies in the identification and classification of diseases through medical imaging.The ETSOTL-MIAS technique involves the Chan Vese segmentation technique to identify the affected regions in the medical image.For feature extraction purposes,the ETSOTL-MIAS technique designs a modified DarkNet-53 model.To avoid the manual hyperparameter adjustment process,the ETSOTLMIAS technique exploits the ETSO algorithm,showing the novelty of the work.Finally,the classification of medical images takes place by random forest(RF)classifier.The performance validation of the ETSOTL-MIAS technique is tested on a benchmark medical image database.The extensive experimental analysis showed the promising performance of the ETSOTL-MIAS technique under different measures. 展开更多
关键词 Medical image analysis transfer learning tunicate swarm optimization disease diagnosis healthcare
下载PDF
Intelligent Classification Model for Biomedical Pap Smear Images on IoT Environment
2
作者 CSS Anupama T.J.Benedict Jose +4 位作者 Heba FEid nojood o aljehane Fahd N.Al-Wesabi Marwa obayya Anwer Mustafa Hilal 《Computers, Materials & Continua》 SCIE EI 2022年第5期3969-3983,共15页
Biomedical images are used for capturing the images for diagnosis process and to examine the present condition of organs or tissues.Biomedical image processing concepts are identical to biomedical signal processing,wh... Biomedical images are used for capturing the images for diagnosis process and to examine the present condition of organs or tissues.Biomedical image processing concepts are identical to biomedical signal processing,which includes the investigation,improvement,and exhibition of images gathered using x-ray,ultrasound,MRI,etc.At the same time,cervical cancer becomes a major reason for increased women’s mortality rate.But cervical cancer is an identified at an earlier stage using regular pap smear images.In this aspect,this paper devises a new biomedical pap smear image classification using cascaded deep forest(BPSIC-CDF)model on Internet of Things(IoT)environment.The BPSIC-CDF technique enables the IoT devices for pap smear image acquisition.In addition,the pre-processing of pap smear images takes place using adaptive weighted mean filtering(AWMF)technique.Moreover,sailfish optimizer with Tsallis entropy(SFO-TE)approach has been implemented for the segmentation of pap smear images.Furthermore,a deep learning based Residual Network(ResNet50)method was executed as a feature extractor and CDF as a classifier to determine the class labels of the input pap smear images.In order to showcase the improved diagnostic outcome of the BPSICCDF technique,a comprehensive set of simulations take place on Herlev database.The experimental results highlighted the betterment of the BPSICCDF technique over the recent state of art techniques interms of different performance measures. 展开更多
关键词 Biomedical imaging pap smear images internet of things deep learning cervical cancer disease diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部