期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Efficient training of ANN potentials by including atomic forces via Taylor expansion and application to water and a transition-metal oxide 被引量:3
1
作者 April M.Cooper Johannes Kästner +1 位作者 Alexander Urban nongnuch artrith 《npj Computational Materials》 SCIE EI CSCD 2020年第1期1205-1218,共14页
Artificial neural network(ANN)potentials enable the efficient large-scale atomistic modeling of complex materials with near firstprinciples accuracy.For molecular dynamics simulations,accurate energies and interatomic... Artificial neural network(ANN)potentials enable the efficient large-scale atomistic modeling of complex materials with near firstprinciples accuracy.For molecular dynamics simulations,accurate energies and interatomic forces are a prerequisite,but training ANN potentials simultaneously on energies and forces from electronic structure calculations is computationally demanding.Here,we introduce an efficient alternative method for the training of ANN potentials on energy and force information,based on an extrapolation of the total energy via a Taylor expansion.By translating the force information to approximate energies,the quadratic scaling with the number of atoms exhibited by conventional force-training methods can be avoided,which enables the training on reference datasets containing complex atomic structures. 展开更多
关键词 FORCES enable ATOMIC
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部