An analysis of light–matter interactions based on symmetries can provide valuable insight,particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system.In t...An analysis of light–matter interactions based on symmetries can provide valuable insight,particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system.In this context,helicity can be a useful addition to more commonly considered observables such as angular momentum.The question arises how to treat helicity,the projection of the total angular momentum onto the linear momentum direction,in practical experiments.In this paper,we put forward a simple but versatile experimental treatment of helicity.We then apply the proposed method to the scattering of light by isolated cylindrical nanoapertures in a gold film.This allows us to study the helicity transformation taking place during the interaction of focused light with the nanoapertures.In particular,we observe from the transmitted light that the scaling of the helicity transformed component with the aperture size is very different to the direct helicity component.展开更多
基金This work was funded by the Centre of Excellence for Engineered Quantum SystemsGM-T is also funded by the Future Fellowship program
文摘An analysis of light–matter interactions based on symmetries can provide valuable insight,particularly because it reveals which quantities are conserved and which ones can be transformed within a physical system.In this context,helicity can be a useful addition to more commonly considered observables such as angular momentum.The question arises how to treat helicity,the projection of the total angular momentum onto the linear momentum direction,in practical experiments.In this paper,we put forward a simple but versatile experimental treatment of helicity.We then apply the proposed method to the scattering of light by isolated cylindrical nanoapertures in a gold film.This allows us to study the helicity transformation taking place during the interaction of focused light with the nanoapertures.In particular,we observe from the transmitted light that the scaling of the helicity transformed component with the aperture size is very different to the direct helicity component.