Wireless sensor networks(WSNs)and Internet of Things(IoT)have gained more popularity in recent years as an underlying infrastructure for connected devices and sensors in smart cities.The data generated from these sens...Wireless sensor networks(WSNs)and Internet of Things(IoT)have gained more popularity in recent years as an underlying infrastructure for connected devices and sensors in smart cities.The data generated from these sensors are used by smart cities to strengthen their infrastructure,utilities,and public services.WSNs are suitable for long periods of data acquisition in smart cities.To make the networks of smart cities more reliable for sensitive information,the blockchain mechanism has been proposed.The key issues and challenges of WSNs in smart cities is efficiently scheduling the resources;leading to extending the network lifetime of sensors.In this paper,a linear network coding(LNC)for WSNs with blockchain-enabled IoT devices has been proposed.The consumption of energy is reduced for each node by applying LNC.The efficiency and the reliability of the proposed model are evaluated and compared to those of the existing models.Results from the simulation demonstrate that the proposed model increases the efficiency in terms of the number of live nodes,packet delivery ratio,throughput,and the optimized residual energy compared to other current techniques.展开更多
Assemblage at public places for religious or sports events has become an integral part of our lives.These gatherings pose a challenge at places where fast crowd verification with social distancing(SD)is required,espec...Assemblage at public places for religious or sports events has become an integral part of our lives.These gatherings pose a challenge at places where fast crowd verification with social distancing(SD)is required,especially during a pandemic.Presently,verification of crowds is carried out in the form of a queue that increases waiting time resulting in congestion,stampede,and the spread of diseases.This article proposes a cluster verification model(CVM)using a wireless sensor network(WSN),single cluster approach(SCA),and split cluster approach(SpCA)to solve the aforementioned problem for pandemic cases.We show that SD,cluster approaches,and verification by WSN can overcome the management issues by optimizing the cluster size and verification time.Hence,our proposed method minimizes the chances of spreading diseases and stampedes in large events such as a pilgrimage.We consider the assembly points in the annual pilgrimage to Makkah Al-Mukarmah and Umrah for verification using Contiki/Cooja tool.We compute results such as verified cluster members(CMs)to define cluster size,success rate to determine the best success rate,and verification time to determine the optimal verification time for various scenarios.We validate ourmodel by comparing the results of each approach with the existing model.Our results showthat the SpCAwith SD is the best approach with a 96% success rate and optimization of verification time as compared to SCA with SD and the existing model.展开更多
Interest in automated data classification and identification systems has increased over the past years in conjunction with the high demand for artificial intelligence and security applications.In particular,recognizin...Interest in automated data classification and identification systems has increased over the past years in conjunction with the high demand for artificial intelligence and security applications.In particular,recognizing human activities with accurate results have become a topic of high interest.Although the current tools have reached remarkable successes,it is still a challenging problem due to various uncontrolled environments and conditions.In this paper two statistical frameworks based on nonparametric hierarchical Bayesian models and Gamma distribution are proposed to solve some realworld applications.In particular,two nonparametric hierarchical Bayesian models based on Dirichlet process and Pitman-Yor process are developed.These models are then applied to address the problem of modelling grouped data where observations are organized into groups and these groups are statistically linked by sharing mixture components.The choice of the Gamma mixtures is motivated by its flexibility for modelling heavy-tailed distributions.In addition,deploying the Dirichlet process prior is justified by its advantage of automatically finding the right number of components and providing nice properties.Moreover,a learning step via variational Bayesian setting is presented in a flexible way.The priors over the parameters are selected appropriately and the posteriors are approximated effectively in a closed form.Experimental results based on a real-life applications that concerns texture classification and human actions recognition show the capabilities and effectiveness of the proposed framework.展开更多
Social media platforms provide new value for markets and research companies.This article explores the use of social media data to enhance customer value propositions.The case study involves a company that develops wea...Social media platforms provide new value for markets and research companies.This article explores the use of social media data to enhance customer value propositions.The case study involves a company that develops wearable Internet of Things(IoT)devices and services for stress management.Netnography and semantic annotation for recognizing and categorizing the context of tweets are conducted to gain a better understanding of users’stress management practices.The aim is to analyze the tweets about stress management practices and to identify the context from the tweets.Thereafter,we map the tweets on pleasure and arousal to elicit customer insights.We analyzed a case study of a marketing strategy on the Twitter platform.Participants in the marketing campaign shared photos and texts about their stress management practices.Machine learning techniques were used to evaluate and estimate the emotions and contexts of the tweets posted by the campaign participants.The computational semantic analysis of the tweets was compared to the text analysis of the tweets.The content analysis of only tweet images resulted in 96%accuracy in detecting tweet context,while that of the textual content of tweets yielded an accuracy of 91%.Semantic tagging by Ontotext was able to detect correct tweet context with an accuracy of 50%.展开更多
基金the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fasttrack Research Funding Program.
文摘Wireless sensor networks(WSNs)and Internet of Things(IoT)have gained more popularity in recent years as an underlying infrastructure for connected devices and sensors in smart cities.The data generated from these sensors are used by smart cities to strengthen their infrastructure,utilities,and public services.WSNs are suitable for long periods of data acquisition in smart cities.To make the networks of smart cities more reliable for sensitive information,the blockchain mechanism has been proposed.The key issues and challenges of WSNs in smart cities is efficiently scheduling the resources;leading to extending the network lifetime of sensors.In this paper,a linear network coding(LNC)for WSNs with blockchain-enabled IoT devices has been proposed.The consumption of energy is reduced for each node by applying LNC.The efficiency and the reliability of the proposed model are evaluated and compared to those of the existing models.Results from the simulation demonstrate that the proposed model increases the efficiency in terms of the number of live nodes,packet delivery ratio,throughput,and the optimized residual energy compared to other current techniques.
基金funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University,through the Research Funding Program(Grant No#.FRP-1442-20).
文摘Assemblage at public places for religious or sports events has become an integral part of our lives.These gatherings pose a challenge at places where fast crowd verification with social distancing(SD)is required,especially during a pandemic.Presently,verification of crowds is carried out in the form of a queue that increases waiting time resulting in congestion,stampede,and the spread of diseases.This article proposes a cluster verification model(CVM)using a wireless sensor network(WSN),single cluster approach(SCA),and split cluster approach(SpCA)to solve the aforementioned problem for pandemic cases.We show that SD,cluster approaches,and verification by WSN can overcome the management issues by optimizing the cluster size and verification time.Hence,our proposed method minimizes the chances of spreading diseases and stampedes in large events such as a pilgrimage.We consider the assembly points in the annual pilgrimage to Makkah Al-Mukarmah and Umrah for verification using Contiki/Cooja tool.We compute results such as verified cluster members(CMs)to define cluster size,success rate to determine the best success rate,and verification time to determine the optimal verification time for various scenarios.We validate ourmodel by comparing the results of each approach with the existing model.Our results showthat the SpCAwith SD is the best approach with a 96% success rate and optimization of verification time as compared to SCA with SD and the existing model.
基金The authors would like to thank Taif University Researchers Supporting Project number(TURSP-2020/26),Taif University,Taif,Saudi ArabiaThey would like also to thank Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R40),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Interest in automated data classification and identification systems has increased over the past years in conjunction with the high demand for artificial intelligence and security applications.In particular,recognizing human activities with accurate results have become a topic of high interest.Although the current tools have reached remarkable successes,it is still a challenging problem due to various uncontrolled environments and conditions.In this paper two statistical frameworks based on nonparametric hierarchical Bayesian models and Gamma distribution are proposed to solve some realworld applications.In particular,two nonparametric hierarchical Bayesian models based on Dirichlet process and Pitman-Yor process are developed.These models are then applied to address the problem of modelling grouped data where observations are organized into groups and these groups are statistically linked by sharing mixture components.The choice of the Gamma mixtures is motivated by its flexibility for modelling heavy-tailed distributions.In addition,deploying the Dirichlet process prior is justified by its advantage of automatically finding the right number of components and providing nice properties.Moreover,a learning step via variational Bayesian setting is presented in a flexible way.The priors over the parameters are selected appropriately and the posteriors are approximated effectively in a closed form.Experimental results based on a real-life applications that concerns texture classification and human actions recognition show the capabilities and effectiveness of the proposed framework.
基金This work was supported by Taif University Researchers Supporting Project number(TURSP-2020/292),Taif University,Taif,Saudi Arabia.This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the fast-track Research Funding Program.
文摘Social media platforms provide new value for markets and research companies.This article explores the use of social media data to enhance customer value propositions.The case study involves a company that develops wearable Internet of Things(IoT)devices and services for stress management.Netnography and semantic annotation for recognizing and categorizing the context of tweets are conducted to gain a better understanding of users’stress management practices.The aim is to analyze the tweets about stress management practices and to identify the context from the tweets.Thereafter,we map the tweets on pleasure and arousal to elicit customer insights.We analyzed a case study of a marketing strategy on the Twitter platform.Participants in the marketing campaign shared photos and texts about their stress management practices.Machine learning techniques were used to evaluate and estimate the emotions and contexts of the tweets posted by the campaign participants.The computational semantic analysis of the tweets was compared to the text analysis of the tweets.The content analysis of only tweet images resulted in 96%accuracy in detecting tweet context,while that of the textual content of tweets yielded an accuracy of 91%.Semantic tagging by Ontotext was able to detect correct tweet context with an accuracy of 50%.