Impurity accumulation is studied for neutral beam-heated discharges after hydrogen multi-pellet injection in Large Helical Device (LHD). Iron density profiles are derived from radial profiles of EUV line emissions o...Impurity accumulation is studied for neutral beam-heated discharges after hydrogen multi-pellet injection in Large Helical Device (LHD). Iron density profiles are derived from radial profiles of EUV line emissions of FeXV-XXIV with the help of the collisional-radiative model. A peaked density profile of Fe2a+ is simulated by using one-dimensional impurity transport code. The result indicates a large inward velocity of -6 m/s at the impurity accumulation phase. However, the discharge is not entirely affected by the impurity accumulation, since the concentration of iron impurity, estimated to be 3.3x10-5 to the electron density, is considerably small. On the other hand, a flat profile is observed for the carbon density of C6+, which is derived from the Zeff profile, indicating a small inward velocity of -1 m/s. These results suggest atomic number dependence in the impurity accumulation of LHD, which is similar to the tokamak result.展开更多
The Plankian radiation temperature of an intense x-ray source driven by imploding spherical CH plastic shell is measured with a filtered-multi-channel pinhole camera. With all the twelve laser beams of the GEKKO-XII l...The Plankian radiation temperature of an intense x-ray source driven by imploding spherical CH plastic shell is measured with a filtered-multi-channel pinhole camera. With all the twelve laser beams of the GEKKO-XII laser facility applied, the average radiation temperature is measured to be around 465 eV while the temperature at the core is as high as 818eV. This value is confirmed by other instruments applied.展开更多
基金support by LHD project (NIFS11ULPP010)partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics
文摘Impurity accumulation is studied for neutral beam-heated discharges after hydrogen multi-pellet injection in Large Helical Device (LHD). Iron density profiles are derived from radial profiles of EUV line emissions of FeXV-XXIV with the help of the collisional-radiative model. A peaked density profile of Fe2a+ is simulated by using one-dimensional impurity transport code. The result indicates a large inward velocity of -6 m/s at the impurity accumulation phase. However, the discharge is not entirely affected by the impurity accumulation, since the concentration of iron impurity, estimated to be 3.3x10-5 to the electron density, is considerably small. On the other hand, a flat profile is observed for the carbon density of C6+, which is derived from the Zeff profile, indicating a small inward velocity of -1 m/s. These results suggest atomic number dependence in the impurity accumulation of LHD, which is similar to the tokamak result.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774184, the National Basic Research Program of China under Grant No 2007CB815101, and the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No KJCX2-YW-T01.
文摘The Plankian radiation temperature of an intense x-ray source driven by imploding spherical CH plastic shell is measured with a filtered-multi-channel pinhole camera. With all the twelve laser beams of the GEKKO-XII laser facility applied, the average radiation temperature is measured to be around 465 eV while the temperature at the core is as high as 818eV. This value is confirmed by other instruments applied.