期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production 被引量:5
1
作者 Longshuai Zhang Ning Ding +10 位作者 Muneaki Hashimoto Koudai Iwasaki noriyasu chikamori Kazuya Nakata Yuzhuan Xu Jiangjian Shi Huijue Wu Yanhong Luo Dongmei Li Akira Fujishima Qingbo Meng 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2295-2309,共15页
Sodium-doped carbon nitride nanotubes (Nax-CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) elemen... Sodium-doped carbon nitride nanotubes (Nax-CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) element mapping and X-ray photoelectron spectroscopy (XPS) measurements confirm that sodium was successfully introduced in the carbon nitride nanotubes (CNNTs), and the intrinsic structure of graphitic carbon nitride (g-C3N4) was also maintained in the products. Moreover, the porous structure of the CNNTs leads to relatively large specific surface areas. Photocatalytic tests indicate that the porous tubular structure and Na+ doping can synergistically enhance the hydrogen evolution rate under visible light (λ 〉 420 nm) irradiation in the presence of sacrificial agents, leading to a hydrogen evolution rate as high as 143 μmol·h-1 (20 mg catalyst). Moreover, other alkali metal-doped CNNTs, such as Lix-CNNTs and Kx-CNNTs, were tested; both materials were found to enhance the hydrogen evolution rate, but to a lower extent compared with the Nax-CNNTs. This highlights the general applicability of the present method to prepare alkali metal-doped CNNTs; a preliminary mechanism for the photocatalytic hydrogen evolution reaction in the Nax-CNNTs is also proposed. 展开更多
关键词 graphitic carbon nitrides NANOTUBES alkali metal doping photocatalytic hydrogen production hydrothermal/thermopolymerization processes two-step synthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部