For the analysis of microRNA, a common approach is to first extract microRNA from cellular samples prior to any specific microRNA detection. Thus, it is important to determine the quality and yield of extracted microR...For the analysis of microRNA, a common approach is to first extract microRNA from cellular samples prior to any specific microRNA detection. Thus, it is important to determine the quality and yield of extracted microRNA. In this study, solid-phase extraction was used to isolate small RNA (? Green II staining. Testing for contamination of any small DNA fragments, RNase and cellular peptides or proteins were systematically carried out. By scanning the gel image obtained from PAGE analysis, the average percentage of total microRNA (19 - 25 nt) in the extracted RNA samples was determined to be equal to 2.3 ± 0.5%. The yield of total microRNA was calculated to be ~0.5ng of microRNA per milligram of frozen mouse brain tissue. In comparison to other methods that require the use of expensive specialized instrumentation, the approach of combining the standard UV absorbance and PAGE analysis represents a simple and viable method for evaluating the quality and yield of microRNA extraction from tissue samples.展开更多
The advantages of combining qualitative and quantitative analysis on a single analytical technique have further extended the applications of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry...The advantages of combining qualitative and quantitative analysis on a single analytical technique have further extended the applications of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to the quantitation of various biomolecules. To achieve absolute quantitation, it is necessary to perform a calibration with standard dilutions. For the purpose of measuring DNA samples, a pure DNA oligonucleotide at different concentrations was chosen as a standard to perform the calibration of MALDI-TOF MS. In order to overcome the variation of signal intensity from repeated measurements of each DNA standard dilution, fixed amount of an internal standard was added into each DNA standard dilution. Instead of maintaining at a constant level, the signals of fixed amount of internal standard were decreased 73% from its initial level while the signals of DNA standard continued to increase within a linear dynamic range for quantitation from 0.20 μM to 12.5 μM of DNA. Attempts to identify the cause of signal reduction were systematically carried out. This is the first report on the extent of signal reduction in quantitative MALDI-TOF MS. These results represent a limitation on using MALDI-TOF MS to monitor the changes in concentration of two different compounds within a chemical or biological system.展开更多
文摘For the analysis of microRNA, a common approach is to first extract microRNA from cellular samples prior to any specific microRNA detection. Thus, it is important to determine the quality and yield of extracted microRNA. In this study, solid-phase extraction was used to isolate small RNA (? Green II staining. Testing for contamination of any small DNA fragments, RNase and cellular peptides or proteins were systematically carried out. By scanning the gel image obtained from PAGE analysis, the average percentage of total microRNA (19 - 25 nt) in the extracted RNA samples was determined to be equal to 2.3 ± 0.5%. The yield of total microRNA was calculated to be ~0.5ng of microRNA per milligram of frozen mouse brain tissue. In comparison to other methods that require the use of expensive specialized instrumentation, the approach of combining the standard UV absorbance and PAGE analysis represents a simple and viable method for evaluating the quality and yield of microRNA extraction from tissue samples.
文摘The advantages of combining qualitative and quantitative analysis on a single analytical technique have further extended the applications of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to the quantitation of various biomolecules. To achieve absolute quantitation, it is necessary to perform a calibration with standard dilutions. For the purpose of measuring DNA samples, a pure DNA oligonucleotide at different concentrations was chosen as a standard to perform the calibration of MALDI-TOF MS. In order to overcome the variation of signal intensity from repeated measurements of each DNA standard dilution, fixed amount of an internal standard was added into each DNA standard dilution. Instead of maintaining at a constant level, the signals of fixed amount of internal standard were decreased 73% from its initial level while the signals of DNA standard continued to increase within a linear dynamic range for quantitation from 0.20 μM to 12.5 μM of DNA. Attempts to identify the cause of signal reduction were systematically carried out. This is the first report on the extent of signal reduction in quantitative MALDI-TOF MS. These results represent a limitation on using MALDI-TOF MS to monitor the changes in concentration of two different compounds within a chemical or biological system.