期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanical Integrity and Failure Analysis of Photovoltaic Modules under Simulated Snow Loads Using Pneumatic Airbag Setup
1
作者 nouman ali shah Rizwan M. Gul Zafar Hayat Khan 《Journal of Power and Energy Engineering》 2022年第1期1-13,共13页
Photovoltaic (PV) modules have emerged as an ideal technology of choice for <span>harvesting vastly available renewable energy resources. However, the effi</span>ciency <span>of PV modules remains si... Photovoltaic (PV) modules have emerged as an ideal technology of choice for <span>harvesting vastly available renewable energy resources. However, the effi</span>ciency <span>of PV modules remains significantly lower than that of other renewable</span> energy sources such as wind and hydro. One of the critical elements affecting a photovoltaic module’s efficiency is the variety of external climatic conditions under which it is installed. In this work, the effect of simulated snow loads was evaluated on the performance of PV modules with different <span>types of cells and numbers of busbars. According to ASTM-1830 and IEC-1215</span> standards, a load of 5400 Pa was applied to the surface of PV modules for 3 hours. An indigenously developed pneumatic airbag test setup was used for the uniform application of this load throughout the test, which was validated by load cell and pressure gauge. Electroluminescence (EL) imaging and solar flash tests were performed before and after the application of load to characterize the performance and effect of load on PV modules. Based on these tests, the maxi<span>mum power output, efficiency, fill factor and series resistance were deter</span>mined. The results show that polycrystalline modules are the most likely to withstand the snow loads as compared to monocrystalline PV modules. A maximum drop of 32.13% in the power output and a 17.6% increase in series resistance were observed in the modules having more cracks. These findings demonstrated the efficacy of the newly established test setup and the potential of snow loads for reducing the overall performance of PV module. 展开更多
关键词 Photovoltaic Modules Pneumatic Testing Setup Mechanical Integrity Electroluminescence Testing Electrical Performance
下载PDF
Fabrication of Highly Anisotropic and Interconnected Porous Scaffolds to Promote Preosteoblast Proliferation for Bone Tissue Engineering 被引量:1
2
作者 Ya-Hui Liu Wei Liu +7 位作者 Zi-Li Zheng Xin Wei nouman ali shah Hao Lin Bai-Song Zhao Shi-Shu Huang Jia-Zhuang Xu Zhong-Ming Li 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第9期1191-1199,共9页
Mimicking the complex structure of natural bone remains a challenge for bone tissue scaffolds.In this study,a novel processing strategy was developed to prepare the bone-like scaffolds that are featured by highly orie... Mimicking the complex structure of natural bone remains a challenge for bone tissue scaffolds.In this study,a novel processing strategy was developed to prepare the bone-like scaffolds that are featured by highly oriented and fully interconnected pores.This type of biomimetic scaffolds was evolved from solid phase stretching of immiscible polycaprolactone(PCL)/poly(ethylene oxide)(PEO)blends with cocontinuous structure and the pore morphology was inherited from selective extraction of water soluble PEO phase.The pore anisotropy was readily tuned by varying the stretching strain without loss of interconnectivity.Significant promotion in preosteoblast proliferation,alkaline phosphatase activity and osteogenic gene expression was observed in the oriented porous scaffolds compared to the isotropic porous counterpart.The oriented architecture provided a topographical cue for aligned growth of preosteoblasts,which activated the Wnt/β-catenin signaling pathway.The proposed strategy enriches the toolbox for the scaffold design and fabrication for bone tissue engineering. 展开更多
关键词 Porous scaffold Pore anisotropy Polymer blend Co-continuous structure Tissue engineering
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部