In past decades, alginate-based multilayer microcapsules have been given important attention in various pharmaceutical investigations. Alginate-poly l lysine-alginate(APA) is studied the most. Due to the similarity be...In past decades, alginate-based multilayer microcapsules have been given important attention in various pharmaceutical investigations. Alginate-poly l lysine-alginate(APA) is studied the most. Due to the similarity between the structure of polyethyleneimine(PEI) and poly-L-lysine(PLL) and also lower price of PEI than PLL, this study was conducted to compare the efficacy of linear(LPEI) and branch(BPEI) forms of PEI with PLL as covering layers in fabrication of microcapsules. The microcapsules were fabricated using electrostatic bead generator and their shape/size, surface roughness, mechanical strength, and interlayer interactions were also investigated using optical microscopy, AFM, explosion test and FTIR, respectively. Furthermore, cytotoxicity was evaluated by comparing the two anionic final covering layers alginate(Alg) and sodium cellulose sulphate(NCS) using MTT test. BPEI was excluded from the rest of the study due to its less capacity to strengthen the microcapsules and also the aggregation of the resultant alginate-BPEI-alginate microcapsules, while LPEI showed properties similar to PLL. MTT test also showed that NCS has no superiority over Alg as final covering layer. Therefore, it is concluded that, LPEI could be considered as a more cost effective alternative to PLL and a promising subject for future studies.展开更多
基金This study was fully funded and supported by Shahid Beheshti University of Medical Sciences(Research grant number.7026)The authors would like to acknowledge Mr.F.Rafraf and Mr.S.M.Foroutanfar for their valuable supports in design of encapsulator device and the graphical parts of this project.
文摘In past decades, alginate-based multilayer microcapsules have been given important attention in various pharmaceutical investigations. Alginate-poly l lysine-alginate(APA) is studied the most. Due to the similarity between the structure of polyethyleneimine(PEI) and poly-L-lysine(PLL) and also lower price of PEI than PLL, this study was conducted to compare the efficacy of linear(LPEI) and branch(BPEI) forms of PEI with PLL as covering layers in fabrication of microcapsules. The microcapsules were fabricated using electrostatic bead generator and their shape/size, surface roughness, mechanical strength, and interlayer interactions were also investigated using optical microscopy, AFM, explosion test and FTIR, respectively. Furthermore, cytotoxicity was evaluated by comparing the two anionic final covering layers alginate(Alg) and sodium cellulose sulphate(NCS) using MTT test. BPEI was excluded from the rest of the study due to its less capacity to strengthen the microcapsules and also the aggregation of the resultant alginate-BPEI-alginate microcapsules, while LPEI showed properties similar to PLL. MTT test also showed that NCS has no superiority over Alg as final covering layer. Therefore, it is concluded that, LPEI could be considered as a more cost effective alternative to PLL and a promising subject for future studies.