The increasing demand for prolonging food shelf life and inhibiting food spoilage and pathogenic microorganisms lead to development of novel biopreservatives and conservation methods. Antimicrobial peptides derived fr...The increasing demand for prolonging food shelf life and inhibiting food spoilage and pathogenic microorganisms lead to development of novel biopreservatives and conservation methods. Antimicrobial peptides derived from microorganisms like bacteriocins are considered as a major alternative to the application of chemical preservatives in food products. Direct addition of purified antimicrobial peptides into food matrix results in reduced antibacterial activity due to the interaction of peptides with food components. Nano- or microencapsulation process can protect biopreservatives against many adverse conditions and controlled release of the agents efficiently prevent microbial contamination and food spoilage. This review focuses on the most frequently used chemical, physical and mechanical encapsulation methods for various antimicrobial bacteriocins including liposome entrapment, coacervation, emulsification, spray-drying, and vibrating technology. The most recent applications of nano- or microencapsulated antimicrobial bacteriocins with emphasis on nisin and pediocin in various food products like dairy, meat products and fruit juice have been discussed.展开更多
文摘The increasing demand for prolonging food shelf life and inhibiting food spoilage and pathogenic microorganisms lead to development of novel biopreservatives and conservation methods. Antimicrobial peptides derived from microorganisms like bacteriocins are considered as a major alternative to the application of chemical preservatives in food products. Direct addition of purified antimicrobial peptides into food matrix results in reduced antibacterial activity due to the interaction of peptides with food components. Nano- or microencapsulation process can protect biopreservatives against many adverse conditions and controlled release of the agents efficiently prevent microbial contamination and food spoilage. This review focuses on the most frequently used chemical, physical and mechanical encapsulation methods for various antimicrobial bacteriocins including liposome entrapment, coacervation, emulsification, spray-drying, and vibrating technology. The most recent applications of nano- or microencapsulated antimicrobial bacteriocins with emphasis on nisin and pediocin in various food products like dairy, meat products and fruit juice have been discussed.