This paper presents a study of physical and biogeochemical variables using numerical model and mixed layer oceanographic data from a 2 - 3 year?in situmeasurements in the Northwestern and Northeastern sites of the Atl...This paper presents a study of physical and biogeochemical variables using numerical model and mixed layer oceanographic data from a 2 - 3 year?in situmeasurements in the Northwestern and Northeastern sites of the Atlantic Ocean. Model outputs are presented and indicated that very good estimates may be obtained. The outputs showed considerable agreement in reproducing seasonal distributions of?pCO2,?pCO2-T,?pCO2-nonT, mixed layer temperature, and chlorophyll-a?in both winter and summer, and therefore provide useful physical and theoretical understanding of their biogeochemistry. The model?pCO2indicated a distinct temporal variability with seasonal changes coinciding with the change in sea surface temperature. It also provides an agreement that there is a strong seasonal cycle of mixed layer parameters filliped by nonthermal and physical factors. As an outgrowth of this work, the?pCO2?model outputs affirm the North Atlantic Ocean capacity as an important oceanographic sink for anthropogenic carbon dioxide.展开更多
This article presents a review of the analytical relevance of trace metal speciation analysis, which must be considered in environmental and biophysicochemical systems for reliable and efficient assessment and monitor...This article presents a review of the analytical relevance of trace metal speciation analysis, which must be considered in environmental and biophysicochemical systems for reliable and efficient assessment and monitoring of trace metals. Examples are given of methodological approaches used for speciation analysis. An overview of speciation analysis in sediments, aquatic ecosystems and agrosystems is also presented.展开更多
文摘This paper presents a study of physical and biogeochemical variables using numerical model and mixed layer oceanographic data from a 2 - 3 year?in situmeasurements in the Northwestern and Northeastern sites of the Atlantic Ocean. Model outputs are presented and indicated that very good estimates may be obtained. The outputs showed considerable agreement in reproducing seasonal distributions of?pCO2,?pCO2-T,?pCO2-nonT, mixed layer temperature, and chlorophyll-a?in both winter and summer, and therefore provide useful physical and theoretical understanding of their biogeochemistry. The model?pCO2indicated a distinct temporal variability with seasonal changes coinciding with the change in sea surface temperature. It also provides an agreement that there is a strong seasonal cycle of mixed layer parameters filliped by nonthermal and physical factors. As an outgrowth of this work, the?pCO2?model outputs affirm the North Atlantic Ocean capacity as an important oceanographic sink for anthropogenic carbon dioxide.
文摘This article presents a review of the analytical relevance of trace metal speciation analysis, which must be considered in environmental and biophysicochemical systems for reliable and efficient assessment and monitoring of trace metals. Examples are given of methodological approaches used for speciation analysis. An overview of speciation analysis in sediments, aquatic ecosystems and agrosystems is also presented.