In this paper,the design of a resonator rectenna,based on metamaterials and capable of harvesting radio-frequency energy at 2.45 GHz to power any low-power devices,is presented.The proposed design uses a simple and in...In this paper,the design of a resonator rectenna,based on metamaterials and capable of harvesting radio-frequency energy at 2.45 GHz to power any low-power devices,is presented.The proposed design uses a simple and inexpensive circuit consisting of a microstrip patch antenna with a mushroom-like electromagnetic band gap(EBG),partially reflective surface(PRS)structure,rectifier circuit,voltage multiplier circuit,and 2.45 GHzWi-Fi module.The mushroom-like EBG sheet was fabricated on an FR4 substrate surrounding the conventional patch antenna to suppress surface waves so as to enhance the antenna performance.Furthermore,the antenna performance was improved more by utilizing the slotted I-shaped structure as a superstrate called a PRS surface.The enhancement occurred via the reflection of the transmitted power.The proposed rectenna achieved a maximum directive gain of 11.62 dBi covering the industrial,scientific,and medical radio band of 2.40–2.48 GHz.A Wi-Fi 4231 access point transmitted signals in the 2.45 GHz band.The rectenna,located 45◦anticlockwise relative to the access point,could achieve a maximum power of 0.53μW.In this study,the rectenna was fully characterized and charged to low-power devices.展开更多
The propose of this paper is to design the circularly polarized antenna for mobile base station, using a curved strip dipole associated with U-shaped reflector and multi-layer metallic rod elec-tromagnetic band gap (E...The propose of this paper is to design the circularly polarized antenna for mobile base station, using a curved strip dipole associated with U-shaped reflector and multi-layer metallic rod elec-tromagnetic band gap (EBG). It can be used to simplify the single feed system of an antenna. The advantages of this proposed antenna are easy fabrication and installation, high gain and light weight. Moreover, it provides a sectoral radiation pattern, a main beam having a narrow beam width in the vertical direction and wider beamwidth in the horizontal direction, which are appro-priate for mobile phone base station. The half-power beam in the H-plane and E-plane are 60 and 14.4 degrees, respectively. The antenna is designed and analyzed by using a computer simulation technology (CST). In addition, S11, axial ratio, radiation pattern and gain are displayed. The designed technique could be confirmed by a measurement resulting from prototype antenna corresponding to simulation results. The proposed antenna has a bandwidth covering the frequency range of 1870 - 2170 MHz, and the gain of the antenna increases up to 15.11 dBi.展开更多
基金supported by the Rajamangala University of Technology Thanyaburi research and development fund.
文摘In this paper,the design of a resonator rectenna,based on metamaterials and capable of harvesting radio-frequency energy at 2.45 GHz to power any low-power devices,is presented.The proposed design uses a simple and inexpensive circuit consisting of a microstrip patch antenna with a mushroom-like electromagnetic band gap(EBG),partially reflective surface(PRS)structure,rectifier circuit,voltage multiplier circuit,and 2.45 GHzWi-Fi module.The mushroom-like EBG sheet was fabricated on an FR4 substrate surrounding the conventional patch antenna to suppress surface waves so as to enhance the antenna performance.Furthermore,the antenna performance was improved more by utilizing the slotted I-shaped structure as a superstrate called a PRS surface.The enhancement occurred via the reflection of the transmitted power.The proposed rectenna achieved a maximum directive gain of 11.62 dBi covering the industrial,scientific,and medical radio band of 2.40–2.48 GHz.A Wi-Fi 4231 access point transmitted signals in the 2.45 GHz band.The rectenna,located 45◦anticlockwise relative to the access point,could achieve a maximum power of 0.53μW.In this study,the rectenna was fully characterized and charged to low-power devices.
文摘The propose of this paper is to design the circularly polarized antenna for mobile base station, using a curved strip dipole associated with U-shaped reflector and multi-layer metallic rod elec-tromagnetic band gap (EBG). It can be used to simplify the single feed system of an antenna. The advantages of this proposed antenna are easy fabrication and installation, high gain and light weight. Moreover, it provides a sectoral radiation pattern, a main beam having a narrow beam width in the vertical direction and wider beamwidth in the horizontal direction, which are appro-priate for mobile phone base station. The half-power beam in the H-plane and E-plane are 60 and 14.4 degrees, respectively. The antenna is designed and analyzed by using a computer simulation technology (CST). In addition, S11, axial ratio, radiation pattern and gain are displayed. The designed technique could be confirmed by a measurement resulting from prototype antenna corresponding to simulation results. The proposed antenna has a bandwidth covering the frequency range of 1870 - 2170 MHz, and the gain of the antenna increases up to 15.11 dBi.