In thermoelectrics,phase engineering serves a crucial function in deter-mining the power factor by affecting the band degeneracy.However,for low-symmetry compounds,the mainstream one-step phase manipulation strategy,d...In thermoelectrics,phase engineering serves a crucial function in deter-mining the power factor by affecting the band degeneracy.However,for low-symmetry compounds,the mainstream one-step phase manipulation strategy,depending solely on the valley or orbital degeneracy,is inadequate to attain a high density-of-states effective mass and exceptional zT.Here,we employ a distinctive two-step phase manipulation strategy through stepwise tailoring chemical bonds in GeSe.Initially,we amplify the valley degeneracy via CdTe alloying,which elevates the crystal symmetry from a covalently bonded orthorhombic to a metavalently bonded rhombohedral phase by significantly suppressing the Peierls distortion.Subsequently,we incorporate Pb to trigger the convergence of multivalence bands and further enhance the density-of-states effective mass by moderately restraining the Peierls distortion.Additionally,the atypical metavalent bonding in rhombohedral GeSe enables a high Ge vacancy concentration and a small band effective mass,leading to increased carrier concentration and mobility.This weak chemical bond along with strong lattice anharmonicity also reduces lattice thermal conductivity.Consequently,this unique property ensemble contributes to an outstanding zT of 0.9 at 773 K for Geo.8oPbo.2oSe(CdTe)o.25.This work underscores the pivotal role of the two-step phase manipulation by stepwise tailoring of chemical bonds in improving the thermoelectric performance of p-bonded chalcogenides.展开更多
基金National Natural Science Foundation of China(52071218)National Key R&D Program of China(2021YFB1507403)+2 种基金Shenzhen University 2035 Pro-gram for Excellent Research( 00000218)China Postdoctoral Science Foundation(2022M722170)Y.Y.and M.W.acknowledge support from the German Research Founda tion(Deutsche Forchungsgemeinschaft,DFG)within project SFB917.Y.Y.acknowledges financial support under the Excellence Strategy of the Federal Govemment and the L ander within the ERS RWTH StartUp grant(Grant No.StUpPD_392-21).The authors also appre-ciate the Instrumental Analysis Center of Shenzhen University.
文摘In thermoelectrics,phase engineering serves a crucial function in deter-mining the power factor by affecting the band degeneracy.However,for low-symmetry compounds,the mainstream one-step phase manipulation strategy,depending solely on the valley or orbital degeneracy,is inadequate to attain a high density-of-states effective mass and exceptional zT.Here,we employ a distinctive two-step phase manipulation strategy through stepwise tailoring chemical bonds in GeSe.Initially,we amplify the valley degeneracy via CdTe alloying,which elevates the crystal symmetry from a covalently bonded orthorhombic to a metavalently bonded rhombohedral phase by significantly suppressing the Peierls distortion.Subsequently,we incorporate Pb to trigger the convergence of multivalence bands and further enhance the density-of-states effective mass by moderately restraining the Peierls distortion.Additionally,the atypical metavalent bonding in rhombohedral GeSe enables a high Ge vacancy concentration and a small band effective mass,leading to increased carrier concentration and mobility.This weak chemical bond along with strong lattice anharmonicity also reduces lattice thermal conductivity.Consequently,this unique property ensemble contributes to an outstanding zT of 0.9 at 773 K for Geo.8oPbo.2oSe(CdTe)o.25.This work underscores the pivotal role of the two-step phase manipulation by stepwise tailoring of chemical bonds in improving the thermoelectric performance of p-bonded chalcogenides.