期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Identification of thermal front dynamics in the northern Malacca Strait using ROMS 3D-model
1
作者 Ku Nor Afiza Asnida Ku MANSOR nur hidayah roseli +2 位作者 Poh Heng KOK Fariz Syafiq Mohamad ALI Mohd Fadzil Mohd AKHIR 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期41-57,共17页
The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter ... The thermal front in the oceanic system is believed to have a significant effect on biological activity.During an era of climate change,changes in heat regulation between the atmosphere and oceanic interior can alter the characteristics of this important feature.Using the simulation results of the 3D Regional Ocean Modelling System(ROMS),we identified the location of thermal fronts and determined their dynamic variability in the area between the southern Andaman Sea and northern Malacca Strait.The Single Image Edge Detection(SIED)algorithm was used to detect the thermal front from model-derived temperature.Results show that a thermal front occurred every year from 2002 to 2012 with the temperature gradient at the location of the front was 0.3°C/km.Compared to the years affected by El Ni?o and negative Indian Ocean Dipole(IOD),the normal years(e.g.,May 2003)show the presence of the thermal front at every selected depth(10,25,50,and 75 m),whereas El Ni?o and negative IOD during 2010 show the presence of the thermal front only at depth of 75 m due to greater warming,leading to the thermocline deepening and enhanced stratification.During May 2003,the thermal front was separated by cooler SST in the southern Andaman Sea and warmer SST in the northern Malacca Strait.The higher SST in the northern Malacca Strait was believed due to the besieged Malacca Strait,which trapped the heat and make it difficult to release while higher chlorophyll a in Malacca Strait is due to the freshwater conduit from nearby rivers(Klang,Langat,Perak,and Selangor).Furthermore,compared to the southern Andaman Sea,the chlorophyll a in the northern Malacca Strait is easier to reach the surface area due to the shallower thermocline,which allows nutrients in the area to reach the surface faster. 展开更多
关键词 regional ocean modelling system thermal front Andaman Sea Malacca Strait single image edge detection algorithm
下载PDF
Water Mass Characteristics and Stratification at the Shallow Sunda Shelf of Southern South China Sea 被引量:1
2
作者 nur hidayah roseli Mohd Fadzil Akhir +2 位作者 Mohd Lokman Husain Fredolin Tangang Azizi Ali 《Open Journal of Marine Science》 2015年第4期455-467,共13页
CTD data obtained from two oceanographic cruises during June and October 2012 were used to define the water mass characteristics and degree of stratification at the shallow Sunda shelf located at the southern South Ch... CTD data obtained from two oceanographic cruises during June and October 2012 were used to define the water mass characteristics and degree of stratification at the shallow Sunda shelf located at the southern South China Sea. The water masses during both cruises showed characteristics similar (southwest monsoon) to those observed in the adjacent regions. A clustering method was used in which three water masses were classified from the composite dataset. There are WM1 (T 29°C - 31°C, S 32 - 33.5 psu, & σT, ~19.5 - 20.7 kg/m3), WM2 (T 25°C - 29°C, S 32.8 - 33.8 psu, & σT, ~22.3 - 23 kg/m3) and WM3 (T 23°C - 25°C, S33.5 - 34.0, & σT ~22.3 - 23.3 kg/m3). Even though the water masses found were characterized under southwest monsoon characteristics, the degrees of stratification obtained varied between these cruises. The stability of the stratification also plays roles in the distribution of the water masses in the water column. WM2 was found in thermocline layer and most dominant in June compared to in October. In June, WM3 was found under the thermocline layer and absent in October. The stable thermocline caused the denser WM3 cannot mixed with WM2. Higher temperatures and weaker winds during June may have caused the strong stratification, while decreasing temperature and stronger winds of an upcoming northeast monsoon enhanced the vertical mixing during October. 展开更多
关键词 Water MASSES STRATIFICATION Brunt-Vaisala Frequency Sunda SHELF SOUTH China SEA
下载PDF
Temperature variability caused by internal tides in the coastal waters of east coast of Peninsular Malaysia
3
作者 nur hidayah roseli Mohd Fadzil Akhir 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第1期22-31,共10页
The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutiv... The effects of tidal currents(i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons(May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia(ECPM),south of the South China Sea(SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal(O_1 and K_1) and semidiurnal(M_2) tidal currents. The spectral density of residual currents(detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency(K_1) and small peaks at the semidiurnal tidal frequency(M_2)indicating the existence of internal tides. The result of the horizontal kinetic energy(HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux(16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is the highest in June and July. 展开更多
关键词 EAST COAST of Peninsular Malaysia South China SEA BAROTROPIC tidal currents internal TIDES nearbottom temperature coastal SHELF SEA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部