This study was conducted to recover edible bird’s nest(EBN)hydrolysates from different grades of EBN,including the industrial by-products,using enzymatic treatment.The nutrient,physicochemical properties and antioxid...This study was conducted to recover edible bird’s nest(EBN)hydrolysates from different grades of EBN,including the industrial by-products,using enzymatic treatment.The nutrient,physicochemical properties and antioxidant activities of the recovered hydrolysates at different hydrolysis times were evaluated.Results showed that the recovery yield of enzymatic hydrolysis was above 89%for all grades of EBN and the degree of hydrolysis increased over time.Nitrite content(0.321-0.433 mg/L)was below the permissible tolerance level for all samples.Interestingly,the antioxidant activities(DPPH and ABTS scavenging activities and ferric reducing antioxidant powder(FRAP)activity)were significantly higher(P≤0.05)in hydrolysates recovered from EBN by-products(EBNhC and EBNhD)as compared to the high grade EBN hydrolysates(EBNhA and EBNhB).The in-vitro probiotic activity of EBN and its hydrolysates were examined using the probiotic bacterium Lactobacillus plantarum.Evidently,EBN by-products hydrolysate(EBNhD)recorded the highest number of L.plantarum(1.1×1011 CFU/mL),indicating that low grade EBN has the potential as prebiotic material that promotes probiotic activity.This study demonstrated the concept of using EBN by-products hydrolysates for various applications,such as functional ingredients with enhanced bioactivities,to improve its economic value.展开更多
基金funded by the Research Excellence Consortium(Konsortium Kecemerlangan Penyelidikan)(KKP/2020/UKMUKM/5/1)(JPT(BKPI)1000/016/018/25(21))the Fundamental Research Grant Scheme(FRGS/1/2019/WAB01/UKM/02/1)。
文摘This study was conducted to recover edible bird’s nest(EBN)hydrolysates from different grades of EBN,including the industrial by-products,using enzymatic treatment.The nutrient,physicochemical properties and antioxidant activities of the recovered hydrolysates at different hydrolysis times were evaluated.Results showed that the recovery yield of enzymatic hydrolysis was above 89%for all grades of EBN and the degree of hydrolysis increased over time.Nitrite content(0.321-0.433 mg/L)was below the permissible tolerance level for all samples.Interestingly,the antioxidant activities(DPPH and ABTS scavenging activities and ferric reducing antioxidant powder(FRAP)activity)were significantly higher(P≤0.05)in hydrolysates recovered from EBN by-products(EBNhC and EBNhD)as compared to the high grade EBN hydrolysates(EBNhA and EBNhB).The in-vitro probiotic activity of EBN and its hydrolysates were examined using the probiotic bacterium Lactobacillus plantarum.Evidently,EBN by-products hydrolysate(EBNhD)recorded the highest number of L.plantarum(1.1×1011 CFU/mL),indicating that low grade EBN has the potential as prebiotic material that promotes probiotic activity.This study demonstrated the concept of using EBN by-products hydrolysates for various applications,such as functional ingredients with enhanced bioactivities,to improve its economic value.