Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contrib...Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contribute to mobilize metal ions by increasing the bioavailable fraction. Some studies have evidenced that heavy metal-resistant bacteria can enhance metal uptake by hyperaccumulator plants. Lead-resistant bacteria which could help to increase the lead uptake by Scirpus grossus was isolated and screened. The samples were taken from plant roots after being exposed in a range finding test by spiking analytical grade of Pb(NO3)2 solution in variation of Pb concentrations. The results of rhizobacteria isolation showed that there were several colonies having resistance to grow and survive in contaminated environment even the host plant had withered. Only a few of rhizobacteria colonies were affected by high concentrations of lead exposure during screening test. The screening test was conducted by growing the isolated colonies on plates containing tryptic soy agar (TSA) medium containing of 200, 400 and 600 mg/L Pb solution including the plate with only TSA media without any lead exposure acting as a control medium, and incubating them at 30℃ for 72 hours. Isolation of bacteria from rhizosphere had found 47 colonies including several colonies from the withered plants. These all 47 colonies then become 28 after characterization by using color and colony morphology, followed by Gram stain, catalase, oxidase and motility test. The screening test of lead resistant bacteria colonies resulted 3 groups which is scored high, medium and low. The screened colonies will then be used for further study.展开更多
文摘Phytoremediation is one of method which can be applied to remediate the contaminated environment. In most cases, microorganisms bacteria and fungi, living in the rhizosphere closely associated with plants, may contribute to mobilize metal ions by increasing the bioavailable fraction. Some studies have evidenced that heavy metal-resistant bacteria can enhance metal uptake by hyperaccumulator plants. Lead-resistant bacteria which could help to increase the lead uptake by Scirpus grossus was isolated and screened. The samples were taken from plant roots after being exposed in a range finding test by spiking analytical grade of Pb(NO3)2 solution in variation of Pb concentrations. The results of rhizobacteria isolation showed that there were several colonies having resistance to grow and survive in contaminated environment even the host plant had withered. Only a few of rhizobacteria colonies were affected by high concentrations of lead exposure during screening test. The screening test was conducted by growing the isolated colonies on plates containing tryptic soy agar (TSA) medium containing of 200, 400 and 600 mg/L Pb solution including the plate with only TSA media without any lead exposure acting as a control medium, and incubating them at 30℃ for 72 hours. Isolation of bacteria from rhizosphere had found 47 colonies including several colonies from the withered plants. These all 47 colonies then become 28 after characterization by using color and colony morphology, followed by Gram stain, catalase, oxidase and motility test. The screening test of lead resistant bacteria colonies resulted 3 groups which is scored high, medium and low. The screened colonies will then be used for further study.