Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the ext...Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.展开更多
文摘Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.