The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse m...The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink The unsteady governing equations are solved by a shooting method with the Runge-Kutta- Fehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation num- ber, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.展开更多
The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetall...The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetallic nanoparticles such as copper (Cu) and titania (Ti02). The governing partial differential equations are transformed into ordinary differential equations through a similarity transformation and are solved numer- ically by a Runge-Kutta-Fehlberg method with a shooting technique. The conclusions are that the heat transfer rate at the moving plate surface increases with the increases in the nanoparticle volume fraction and the Newtonian heating, while it decreases with the increase in the Brinkmann number. Moreover, the heat transfer rate at the moving plate surface with Cu-water as the working nanofiuid is higher than that with TiO2-water.展开更多
This study is devoted to investigate the inherent irreversibility and thermal stability in a reactive electrically conducting fluid flowing steadily through a channel with isothermal walls under the influence of a tra...This study is devoted to investigate the inherent irreversibility and thermal stability in a reactive electrically conducting fluid flowing steadily through a channel with isothermal walls under the influence of a transversely imposed magnetic field.Using a perturbation method coupled with a special type of Hermite-Pade' approximation technique,the simplified governing non-linear equation is solved and the important properties of overall flow structure including velocity field,temperature field and thermal criticality conditions are derived which essentially expedite to obtain expressions for volumetric entropy generation numbers,irreversibility distribution ratio and the Bejan number in the flow field.展开更多
This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permea...This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation, Hall and slip effects are considered within the flow analysis. The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs (partial differential equations) are solved with the help of Finite Difference Scheme. In the presence of pertinent parameters, the precise movement of the flow in terms of velocity, temperature, entropy generation rate, and Bejan numbers are presented graphically, which are parabolic in nature. Streamline profiles are also presented, which exemplify the accurate movement of the flow. The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel. It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.展开更多
文摘The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink The unsteady governing equations are solved by a shooting method with the Runge-Kutta- Fehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation num- ber, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow.
文摘The combined effects of viscous dissipation and Newtonian heating on bound- ary layer flow over a moving flat plate are investigated for two types of water-based New- tonian nanofluids containing metallic or nonmetallic nanoparticles such as copper (Cu) and titania (Ti02). The governing partial differential equations are transformed into ordinary differential equations through a similarity transformation and are solved numer- ically by a Runge-Kutta-Fehlberg method with a shooting technique. The conclusions are that the heat transfer rate at the moving plate surface increases with the increases in the nanoparticle volume fraction and the Newtonian heating, while it decreases with the increase in the Brinkmann number. Moreover, the heat transfer rate at the moving plate surface with Cu-water as the working nanofiuid is higher than that with TiO2-water.
文摘This study is devoted to investigate the inherent irreversibility and thermal stability in a reactive electrically conducting fluid flowing steadily through a channel with isothermal walls under the influence of a transversely imposed magnetic field.Using a perturbation method coupled with a special type of Hermite-Pade' approximation technique,the simplified governing non-linear equation is solved and the important properties of overall flow structure including velocity field,temperature field and thermal criticality conditions are derived which essentially expedite to obtain expressions for volumetric entropy generation numbers,irreversibility distribution ratio and the Bejan number in the flow field.
基金Support of the National Natural Science Foundation of China under Grant Nos.51709191 and 51706149Key Laboratory of Advanced Reactor Engineering and Safety,Ministry of Education under Grant No.ARES-2018-10
文摘This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation, Hall and slip effects are considered within the flow analysis. The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs (partial differential equations) are solved with the help of Finite Difference Scheme. In the presence of pertinent parameters, the precise movement of the flow in terms of velocity, temperature, entropy generation rate, and Bejan numbers are presented graphically, which are parabolic in nature. Streamline profiles are also presented, which exemplify the accurate movement of the flow. The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel. It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.