期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
In situ selective laser gas nitriding for composite TiN/Ti-6Al-4V fabrication via laser powder bed fusion 被引量:1
1
作者 P.A.Morton H.C.Taylor +3 位作者 L.E.Murr o.g.delgado C.A.Terrazas R.B.Wicker 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期98-107,共10页
Laser-assisted gas nitriding of selective Ti-6Al-4V surfaces has been achieved during laser powder bed fusion fabrication by exchanging the argon build gas environment with nitrogen.Systematic variation of processing ... Laser-assisted gas nitriding of selective Ti-6Al-4V surfaces has been achieved during laser powder bed fusion fabrication by exchanging the argon build gas environment with nitrogen.Systematic variation of processing parameters allowed microdendritic Ti N surface coatings to be formed having thicknesses ranging from a few tens of microns to several hundred microns,with TiN dendrite microstructure volume fractions ranging from 0.6 to 0.75;and corresponding Vickers microindentation hardness values ranging from^7.5 GPa–9.5 GPa.Embedded TiN hard layers ranging from 50μm to 150μm thick were also fabricated in the laser-beam additively manufactured Ti-6Al-4V alloy producing prototype,hybrid,planar composites having alternating,ductile Ti-6Al-4V layers with a hardness of^4.5 GPa and a stiff,TiN layer with a hardness of^8.5 GPa.The results demonstrate prospects for fabricating novel,additively manufactured components having selective,hard,wear and corrosion resistant coatings along with periodic,planar or complex metal matrix composite regimes exhibiting superior toughness and related mechanical properties. 展开更多
关键词 TI-6AL-4V TiN ceramic coatings and embedded layers Dendritic microstructures Selective laser melting Additive manufacturing Metal matrix composites Selective nitriding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部