期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Using Semantic Web Technologies to Improve the Extract Transform Load Model
1
作者 Amena Mahmoud Mahmoud Y.Shams +1 位作者 o.m.elzeki Nancy Awadallah Awad 《Computers, Materials & Continua》 SCIE EI 2021年第8期2711-2726,共16页
Semantic Web(SW)provides new opportunities for the study and application of big data,massive ranges of data sets in varied formats from multiple sources.Related studies focus on potential SW technologies for resolving... Semantic Web(SW)provides new opportunities for the study and application of big data,massive ranges of data sets in varied formats from multiple sources.Related studies focus on potential SW technologies for resolving big data problems,such as structurally and semantically heterogeneous data that result from the variety of data formats(structured,semi-structured,numeric,unstructured text data,email,video,audio,stock ticker).SW offers information semantically both for people and machines to retain the vast volume of data and provide a meaningful output of unstructured data.In the current research,we implement a new semantic Extract Transform Load(ETL)model that uses SW technologies for aggregating,integrating,and representing data as linked data.First,geospatial data resources are aggregated from the internet,and then a semantic ETL model is used to store the aggregated data in a semantic model after converting it to Resource Description Framework(RDF)format for successful integration and representation.The principal contribution of this research is the synthesis,aggregation,and semantic representation of geospatial data to solve problems.A case study of city data is used to illustrate the semantic ETL model’s functionalities.The results show that the proposed model solves the structural and semantic heterogeneity problems in diverse data sources for successful data aggregation,integration,and representation. 展开更多
关键词 Semantic web big data ETL model linked data geospatial data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部