A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that a...A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that after urea fertilizer applied, the N2O emission from soil and soil-wheat system decreased exponentially with time, and its total amount was 0.34%~0.63% and 0.33%~0.58% of applied urea-N respectively, no significant difference being found between these two systems. The N2O emission had a very significant negative relationship (P = 0.01) with the biomass of wheat plant. A combined application of urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide could reduce the N2O emission by 50%~83% and 46%~74%, respectivelyl from soil and soil-wheat system. The N2O was mainly produced and emitted from soil, and the soil biochemical regulation, i.e., applying related inhibitors into soil could effectively diminish the urea derived N2O emission.展开更多
基金the National Natural Science Foundation of China (No. 39730110) and the Ministryof Foreign Affairs, Belgium (ABOS) through "VL
文摘A pot experiment with a sandy loam soil and spring wheat as test crop was conducted to compare the N2O emission from soil system with plant cut off and from soil-plant system with plant kept. The results showed that after urea fertilizer applied, the N2O emission from soil and soil-wheat system decreased exponentially with time, and its total amount was 0.34%~0.63% and 0.33%~0.58% of applied urea-N respectively, no significant difference being found between these two systems. The N2O emission had a very significant negative relationship (P = 0.01) with the biomass of wheat plant. A combined application of urease inhibitor hydroquinone and nitrification inhibitor dicyandiamide could reduce the N2O emission by 50%~83% and 46%~74%, respectivelyl from soil and soil-wheat system. The N2O was mainly produced and emitted from soil, and the soil biochemical regulation, i.e., applying related inhibitors into soil could effectively diminish the urea derived N2O emission.