期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Positive Solutions for Singular Quasilinear Schrodinger Equations with One Parameter, II 被引量:2
1
作者 MOAMENI Abbas offin daniel c. 《Journal of Partial Differential Equations》 2010年第3期222-234,共13页
We establish the existence of positive bound state solutions for the singular quasilinear Schrodinger equation iψ/t=-div(ρ(|ψ|^2) ψ)+ω(|ψ|62)ψ-λρ(|ψ|^2)ψ,x∈Ω,t〉0,where ω(τ^2)τ→∞ as... We establish the existence of positive bound state solutions for the singular quasilinear Schrodinger equation iψ/t=-div(ρ(|ψ|^2) ψ)+ω(|ψ|62)ψ-λρ(|ψ|^2)ψ,x∈Ω,t〉0,where ω(τ^2)τ→∞ as τ→ 0 and, λ 〉 0is a parameter and Ω is a ball in ^RN. This problem is studied in connection with the following quasilinear eigenvalue problem with Dirichlet boundary condition -div(ρ(| ψ|^2) ψ)=λ1ρ(|ψ|^2)ψ=λ1ρ(|ψ|^2)ψ,x∈Ω.Indeed, we establish the existence of solutions for the above Schrodinger equation when A belongs to a certain neighborhood of the first eigenvahie λ1 of this eigenvalue problem. The main feature of this paper is that the nonlinearity ω|ψ|^2 is unbounded around the origin and also the presence of the second order nonlinear term. Our analysis shows the importance of the role played by the parameter A combined with the nonlinear nonhomogeneous term div (ρ(| ψ|^2) ψ) which leads us to treat this prob- lem in an appropriate Orlicz space. The proofs are based on various techniques related to variational methods and implicit function theorem. 展开更多
关键词 Schrodinger equations solitary waves variational methods.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部