We establish the existence of positive bound state solutions for the singular quasilinear Schrodinger equation iψ/t=-div(ρ(|ψ|^2) ψ)+ω(|ψ|62)ψ-λρ(|ψ|^2)ψ,x∈Ω,t〉0,where ω(τ^2)τ→∞ as...We establish the existence of positive bound state solutions for the singular quasilinear Schrodinger equation iψ/t=-div(ρ(|ψ|^2) ψ)+ω(|ψ|62)ψ-λρ(|ψ|^2)ψ,x∈Ω,t〉0,where ω(τ^2)τ→∞ as τ→ 0 and, λ 〉 0is a parameter and Ω is a ball in ^RN. This problem is studied in connection with the following quasilinear eigenvalue problem with Dirichlet boundary condition -div(ρ(| ψ|^2) ψ)=λ1ρ(|ψ|^2)ψ=λ1ρ(|ψ|^2)ψ,x∈Ω.Indeed, we establish the existence of solutions for the above Schrodinger equation when A belongs to a certain neighborhood of the first eigenvahie λ1 of this eigenvalue problem. The main feature of this paper is that the nonlinearity ω|ψ|^2 is unbounded around the origin and also the presence of the second order nonlinear term. Our analysis shows the importance of the role played by the parameter A combined with the nonlinear nonhomogeneous term div (ρ(| ψ|^2) ψ) which leads us to treat this prob- lem in an appropriate Orlicz space. The proofs are based on various techniques related to variational methods and implicit function theorem.展开更多
文摘We establish the existence of positive bound state solutions for the singular quasilinear Schrodinger equation iψ/t=-div(ρ(|ψ|^2) ψ)+ω(|ψ|62)ψ-λρ(|ψ|^2)ψ,x∈Ω,t〉0,where ω(τ^2)τ→∞ as τ→ 0 and, λ 〉 0is a parameter and Ω is a ball in ^RN. This problem is studied in connection with the following quasilinear eigenvalue problem with Dirichlet boundary condition -div(ρ(| ψ|^2) ψ)=λ1ρ(|ψ|^2)ψ=λ1ρ(|ψ|^2)ψ,x∈Ω.Indeed, we establish the existence of solutions for the above Schrodinger equation when A belongs to a certain neighborhood of the first eigenvahie λ1 of this eigenvalue problem. The main feature of this paper is that the nonlinearity ω|ψ|^2 is unbounded around the origin and also the presence of the second order nonlinear term. Our analysis shows the importance of the role played by the parameter A combined with the nonlinear nonhomogeneous term div (ρ(| ψ|^2) ψ) which leads us to treat this prob- lem in an appropriate Orlicz space. The proofs are based on various techniques related to variational methods and implicit function theorem.