Carrier dynamics and surface reaction are two critical processes for determining the performance of photocatalytic reaction.Highly designable polymer-based photocatalysts have shown promising protectives in energetic ...Carrier dynamics and surface reaction are two critical processes for determining the performance of photocatalytic reaction.Highly designable polymer-based photocatalysts have shown promising protectives in energetic and environmental applications.In this prospective,we first distinguished the differences of physiochemical properties between polymer-based semiconductors and traditional inorganic semiconductors.Then,the effects of single-atom sites on the charge dynamics and reaction kinetics of polymer-based photocatalysts are further elaborated.Time(excitation)-space(wavefunction)population analysis,which can provide relevant information to clarify the structure-excitation relationships after introducing the single atom sites was also reviewed.In the future,with the further development of artificial intelligence,the establishment of an energy function with a regression accuracy close to or reaching the level of density functional theory is highly desired to infer the energetic diagram of the photocatalytic systems at the excited states.Furthermore,coordination structures,interaction with inorganic semiconductors,photocatalytic stability and solvent effects should also be carefully considered in the future studies of polymer-based photocatalyst.展开更多
基金Mitsubishi Chemical Corporation,JSPS Grant-in-Aid for Scientific Research(B,No.20H02847)Grant-in-Aid for JSPS Fellows(DC2,No.20J13064)+2 种基金National Natural Science Foundation of China(No.21805191)Guangdong Basic and Applied Basic Research Foundation,China(No.2020A1515010982)Shenzhen Stable Support Project,China(No.20200812122947002).
文摘Carrier dynamics and surface reaction are two critical processes for determining the performance of photocatalytic reaction.Highly designable polymer-based photocatalysts have shown promising protectives in energetic and environmental applications.In this prospective,we first distinguished the differences of physiochemical properties between polymer-based semiconductors and traditional inorganic semiconductors.Then,the effects of single-atom sites on the charge dynamics and reaction kinetics of polymer-based photocatalysts are further elaborated.Time(excitation)-space(wavefunction)population analysis,which can provide relevant information to clarify the structure-excitation relationships after introducing the single atom sites was also reviewed.In the future,with the further development of artificial intelligence,the establishment of an energy function with a regression accuracy close to or reaching the level of density functional theory is highly desired to infer the energetic diagram of the photocatalytic systems at the excited states.Furthermore,coordination structures,interaction with inorganic semiconductors,photocatalytic stability and solvent effects should also be carefully considered in the future studies of polymer-based photocatalyst.